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Preface

This thesis is the final project for the Master of Science in Engineering Acoustics
at the Technical University of Denmark (DTU). The project was conducted at the
Acoustic Technology sector, at the Electrical Engineering department, from Febru-
ary to July 2011, under the supervision of Assoc. Prof. Jonas Brunskog, Assist.
Prof. Cheol-Ho Jeong and Assoc. Prof. Finn Jacobsen. The study reports an in-
vestigation in energy integral equation models for use in room acoustic predictions.
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Abstract

A combined model for room acoustic predictions is developed. The model aims
to treat both diffuse and specular reflections in a unified way. Two well known
methods are incorporated: acoustical radiosity, accounting for the diffuse part and
the image source method, accounting for the specular part. The model is based
on the conservation of the acoustical energy. Losses are taken into account by
the energy absorption coefficient and the diffuse reflections are controlled via the
scattering coefficient, which defines the portion of energy that has been diffusely
reflected.

The model is optimized for impulse response predictions in arbitrary polyhedral
rooms and it is deterministic, compared to other room acoustic models, such as
ray tracing, which is based on stochastic simulation. The resolution of the impulse
response is high and from this common room acoustic parameters can be predicted.

The predictions are validated by measurements in a scale model room and by
comparison with published measurement data for a real music studio hall. Despite
a few deviations in some of the parameters, the model seems promising for a com-
mercial application, with high accuracy. Like all geometrical acoustic models, the
presented one suffers from the coarse assumption that a wave can be replaced by a
ray and it is valid for frequencies above Schroeder’s large room limit.
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Chapter 1

Introduction

1.1 Geometrical Room Acoustics

Sound fields in rooms are extremely complicated in general, except from a few rather
simple cases, such as a spherical or a rectangular room. But even in such simply
shaped rooms, the acoustic behavior can be difficult to predict, due to numerous
factors that influence the propagation of sound inside them, apart from the geometry.
Three of the most important are the absorption and roughness of the walls, as well
as the dissipation of energy in the air.

Room sound field predictions can be divided roughly into two categories: 1)
wave acoustics and 2) geometrical acoustics. The former works with solutions of
the wave equation analytically for simple cases or numerically for complicated ones.
The Green’s function is one of the basic tools for such models, providing the impulse
response at a receiving position, due to a Dirac-impulse source. In the same cat-
egory, Finite Element or Boundary Element methods can be included, attempting
to solve the wave equation numerically for complicated room shapes, by subdivid-
ing the interior domain into solid elements or the boundary into surface elements,
respectively. An eigenmode analysis is possible with such methods, as long as the
room is not large and the frequency is low. Otherwise the required subdivision be-
comes very high, raising abruptly the computational effort. The major feature of
this category is the inclusion of phase information in the sound field, and this is the
reason why an eigenmode analysis is feasible.

The second category of room acoustic predictions makes an important simplifi-
cation. The sound waves are replaced by rays [1], following the notion used in optics
for light waves. With this assumption, almost all the literature from optics can be
applied in acoustics, with one distinct difference: The time dependence. Light prop-
agates with a very high speed, so that the problem can be assumed independent of
time, for all engineering applications. In contrast, sound propagates very slowly and
the acoustic problem remains a time-dependent one. The major goal in geometrical
room acoustics is the estimation of the impulse response at a receiving position for
arbitrary shaped rooms, of any size. Phase information can be included in some
models, allowing simulation of pressure impulse responses and eigenmode analysis.
A pressure impulse response is very useful for performing auralizations. But, models
without phase information work well for certain areas of interest. They are used for
a fast and as reliable as possible prediction of room acoustic parameters [1, 2], which
are of great value for design or optimization purposes for auditoriums, classrooms,
concert halls, theaters and so on. Most of the room acoustic parameters are nothing
else than energy ratios between different parts of the response (such as early-late)
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and thus they are based on the squared pressure impulse response. However, a fre-
quency dependence is still preserved in this category by allowing the absorption on
the walls and in the air to be frequency dependent.

In this study we often deal with the so called reflectograms (or echograms) which
are graphs showing the strength of the reflections as a function of their arrival times,
t, at a receiver, after the direct contribution. The direct contribution is by definition
placed at t = 0. A reflectogram is pretty similar to a squared pressure impulse
response (energy impulse response), since both graphs represent the response of the
room.

Obviously, geometrical acoustic models are realized by computer modeling which
has been greatly developed from the 1960s and is now the major tool for application
and research purposes in room acoustics. A variety of commercial software exists
for this, tending to replace gradually the need for scale models in the design of new
halls [2]. The assumption of geometrical rays – instead of waves – is valid at high
frequencies for which the wavelength becomes comparable with the room dimensions.
Apart from that, the assumptions of the geometrical acoustic models are valid for
frequencies above Schroeder’s large room limit [3]:

fsch ≈ 2000

√
T60
V

(1.1)

where T60 is the reverberation time in the room and V is its volume. Above fsch there
is strong modal overlap, so that eigenmodes are hardly distinguishable and results
from geometrical acoustic methods can be accepted. Apparently, an eigenfrequency
analysis is useless for this area. For small rooms Schroeder’s frequency becomes
high, so that the valid region for geometrical modeling is quite limited. But, as
the room becomes larger, Schroeder’s frequency decreases, making the prediction
reliable in the common range of interest.

1.2 Specular and Diffuse Reflections

The absorption coefficients of the walls in a room are of great importance for the
geometrical acoustic models, since they represent the dissipation of energy. However,
the way the total energy in a room is dissipated depends also on the kind of reflection
occurring on each wall. The two extreme cases of reflection is the specular and diffuse
(Fig. 1.1). In the first case the angle of a reflected sound ray is the same with the
angle of the incident ray. In the second case, an incident ray gives rise to a bundle
of other rays towards randomly distributed directions. This second case occurs on
surfaces with prominent roughness. The notion of the diffuse reflection can hold
only macroscopically, so that the rough surfaces can be treated as flat in computer
models. Of course if we were able to zoom in and model all the surface irregularities
by numerous planes, we could probably treat the diffuse reflection as specular, but
the computational effort would become intolerable for our existing computational
power. Hence, modeling the scattering surfaces as flat and attaching a scattering
coefficient (see Sec. 1.4) provides a very practical tool for room acoustic modeling.

One can see the optical analogy for the two kinds of reflections by considering a
mirror as a specular surface for light and a typical flat gypsum board as a scattering
one. However, due to the different nature of sound and light waves, a gypsum board
cannot be considered as a scattering surface for sound waves, in the same degree as
for light waves. This is because of the different wavelength. Audible sound exists at
much longer wavelengths than visible light. So, the roughness of the surface should
be higher for sound in order for a prominent scattering to take place.
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(a) Purely specular. (b) Purely diffuse. (c) Mixed reflection.

Figure 1.1: Specular and diffuse reflection.

Diffuse reflection is memoryless, that is, the reflected ray can be determined
without knowledge of the incident. In contrast, when specular reflection takes place,
the history of the incident ray must be known for the determination of the reflected
ray.

In real walls, neither specular or diffuse reflection occurs. The situation is a
semi-diffuse (or semi-specular) reflection. This mixed case is usually treated as a
combination of purely specular and purely diffuse reflection in different proportions,
as illustrated in Figure 1.1. The ultimate goal of this thesis is to effectively treat
the mixed case.

1.3 Review of Geometrical Room Acoustic Models

By replacing sound waves by rays, most of the sound propagation laws degenerate
to simple geometrical tasks. The direct contribution from a source to a receiver is
represented by a straight connecting line, while a reflection can be represented by
the total path connecting the source to the reflecting point and subsequently this
point to the receiver. This is the basis for all geometrical acoustic models.

Probably the most known model is ray tracing . It is an efficient combina-
tion of geometrical acoustics and stochastic simulation. Introduced in acoustics
by Krokstadt [4], it has been experienced considerable development over the past 40
years, because of its efficiency and its simple implementation. The principle of the
model is the emission of a large number of rays from a source towards all directions
that are consistent with its directivity pattern. The rays can be emitted randomly or
uniformly, but since their number is not infinite, the simulation involves statistical
errors that are reduced as the number of rays is increased. Each ray is reflected
specularly at the room surfaces many times and the whole path is recorded. If the
ray passes around the proximity of a point receiver, a contribution is added, accord-
ing to the present strength of the ray. The proximity around the receiver usually is
defined by a small sphere or another solid body that is called tracer. Intersection of
the ray with the body results in a contribution. A ray is aborted from the recording
list if its energy has become smaller than a predefined limit. A maximum number
of reflections can also be used as a stop criterion. In some ray tracing models the
tracer expands as time is increased [5, 6], in order to account for the increasing
number of reflections as a function of time and the expansion of the wave fronts as
they propagate away from the source. Two variants of the ray-tracing, accounting
for this expansion, are the beam and cone tracing [6]. Evidently, the way the rays
are emitted and traced by the receiver involves a stochastic simulation, because we
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are never absolutely sure that all the relevant reflections have been detected, and on
the other hand, many rays are detected “around” the receiver and not at its center.
Ray-tracing and its variations were initially based on specular reflections, but re-
cently some modifications allow the treatment of diffuse reflections as well [6]. In the
usual way, every time a ray hits a diffusing surface, a random number is generated,
determining the new direction of the ray. In Dalenbäck’s approach [6], a secondary
source is created emitting new rays omnidirectionally towards the half-space defined
by the surface.

Similar to ray-tracing is the sonel mapping technique[7] where, instead of rays,
waves are represented by sound particles, carrying a portion of the total energy
supplied by the source. The method uses the same principles as the photon mapping
technique, in computer graphics [8]. The particles are again detected by a tracer
around the receiver and the relevant contribution is added. Both specular and
diffuse reflections can be treated. The model is again a stochastic one.

Possibly the only full deterministic geometrical acoustic model is the image
source model, ISM, [9, 10, 11, 12], described extensively in Chapter 3. It is a
perfectly specular-reflection based model. Every reflection can be represented by an
image source. Hence, the total path, from the original source to the receiver via the
reflection, can be seen as the distance from the image source to the receiver. Each
image source generates other image sources with respect to the walls, corresponding
to a higher order of reflection. This process is repeated until a desired upper limit
of reflections have been reached. Once the image sources have been located in the
space around the room, its walls can be fully neglected and the contributions from
the generated sources are calculated at the receiver. As will become apparent in
Chapter 3, the method does not suffer from statistical errors. One of the major
drawbacks is the nonlinear increase of the computational load with the length of
the desired impulse response, because of the exponential growth of the number of
sources. On the contrary, in ray-tracing the computation time increases only linearly
with the length of the impulse response, since the number of rays is fixed. How-
ever this is the reason why the ISM results in a far better resolution in the impulse
response than ray-tracing does. Recently a hybrid model between ray-tracing and
ISM have been used [5, 13], incorporating the best parts of both methods.

The only model that effectively simulates perfectly diffuse reflections in a room
is acoustical radiosity AR, based on an energy integral equation. Since this model
is the basis of our study – together with the ISM – it will be described in detail in
Chapter 2. AR models the diffuse reflections with much better accuracy than the
ray-tracing models do. The method is linked somehow to the Boundary Element
methods, since the room surfaces are subdivided into a number of elements and the
energy exchange between them is calculated.

1.4 Energy Considerations in a Room

1.4.1 Mean Free Path

One of the most basic terms in room acoustics is the mean free path [1], which
is defined as the ratio of the total distance that a sound particle has traveled to
the total number of reflections, K, it has undergone, 〈R〉 = ct/K. It essentially
represents the average distance the sound particle travels between two subsequent
reflections. For rooms with diffuse sound field the mean free path for any sound
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particle is given by the simple formula [14]:

〈R〉 =
4V

S
(1.2)

where V is the volume of the room and S is its entire surface.

1.4.2 Energy Decay

When a source in the room emits a Dirac impulse at time t = 0, a direct contribution
reaches the receiver, followed by subsequent early reflections from the walls. Under
the assumption of specular reflections, the reflection density is increased according to
a quadratic function of time [15]. This means that soon the early distinct reflections
have been converted into a group of hardly distinguishable ones, that usually are
referred as the reverberant tail of the response [1]. In reality, the reflections are
not purely specular, except from the very early part of the room response. Any
scattering surface in the room converts the initially specularly reflected energy into
diffusely reflected and after a while, the reverberant tail consist of almost purely
diffuse reflections.

Under the diffuse sound field assumption, the energy decay follows an exponential
law. According to Eyring’s reverberation theory the energy decay as a function of
time is given by [1]:

E(t) = E0 exp

[
cS

4V
t ln(1− ᾱ)

]
(1.3)

where E0 is the initial energy, c is the speed of sound and ᾱ is the average absorption
coefficient. The natural logarithm in eq. (1.3) can be expanded into a series [1]:

ln(1− ᾱ) = −ᾱ− ᾱ2

2
− ᾱ3

3
+ . . . (1.4)

If the average absorption coefficient is considered small compared with unity, only
the first term can be kept, ln(1 − ᾱ) ' −ᾱ, so that the energy decay can now be
expressed according to Sabine’s reverberation theory:

E(t) = E0 exp

[
−cS
4V

ᾱt

]
(1.5)

The two expressions give similar results as long as ᾱ is small enough, and they
are valid for a perfectly diffuse field. The reverberation time according to Eyring’s
theory is:

T = − 55.3V

cS ln(1− ᾱ)
(1.6)

while according to Sabine’s theory it is:

T =
55.3V

cSᾱ
(1.7)

When ᾱ is large, the reverberation time given by eq. (1.6) is longer than that given
by eq. (1.7).

In general, the simulated energy decay in a room very much depends on the kind
of reflections assumed. Even if the absorption on the walls is the same, the energy
is distributed differently when only specular or diffuse reflections are taken into
account. Hodgson [16] states that the sound decay is nonlinear on a logarithmic scale
for rooms with purely specularly reflecting surfaces. This means that the exponential
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Figure 1.2: Conversion from specularly into diffusely reflected energy. General trend,
illustrated by Kuttruff [20]. Taken from [5].

law is not valid. The slope of the decay curve becomes smaller at the end. But the
way the energy decays is highly dependent on the room shape. Irregular shapes
tend to distribute the energy more than regular shapes – like rectangular rooms –
so that the energy decay approaches the exponential law [16, 17]. As will become
apparent in Sec. 3.2, regular rooms tend to maintain highly symmetric reflection
patterns which decay much slower than the asymmetrical ones. A very common
example in rectangular rooms is the flutter echo phenomenon, where two parallel
highly reflective surfaces lead to repeatable reflections between them. However,
when some of the surfaces in the room reflect sound in a diffuse manner the slope
of the decay curve is very close to the one predicted by eq. (1.3), even for regular or
symmetrical rooms [17].

For the characterization of diffuse reflections, the scattering coefficient, s, has
been introduced [18], representing the fraction of the energy that is diffusely reflected
by a surface. Hanyu [19] presents a theoretical framework for describing the degree
of diffusion in a room. He introduces the concept of average scattering coefficient,
s̄, in analogy to the average absorption coefficient. Hanyu considers the absorption
and scattering coefficients as probabilities that a sound particle is absorbed or is
diffusely reflected, respectively.

All of the present discussion is based on a very important fact: The conversion of
specular sound energy into diffuse sound energy is irreversible [20]. This means that
once a ray has been split up to a bundle of other rays, during a diffuse reflection,
it is impossible that these rays can be concentrated to form again one single ray.
In this way, less and less portion of energy is carried by a ray of the bundle after
a sequence of diffuse reflections. Thus, even a small amount of diffusion in a room
is able to convert all the specular energy into diffuse and to bring the decay curve
close to that obtained when perfectly diffuse wall reflections are assumed [17, 20].

Figure 1.2 illustrates a classical example by Kuttruff about the conversion of
specularly reflected sound energy to diffusely reflected. In this example the absorp-
tion coefficient is uniform, 0.2, and at every reflection, 25% of the impinging energy
is scattered, while 75% is reflected specularly. Just after the first reflection 25%
of the energy has been diffusely reflected. Soon, the diffusely reflected portion of
energy is larger than the specularly reflected one. Summing up the “diffuse” and
“specular” energies at every reflection, we get the total energy in the room. The
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reflections are assumed to be equally spaced in time. Consequently, similar graphs
are expected in time-domain too, as were the examples presented by Hanyu [19].

1.5 Layout of the Thesis

The scope of this thesis is to develop a computational model for room acoustic pre-
dictions based on a unified treatment of diffuse and specular reflections. The model
is indented for energy impulse response predictions, thus for transient sound fields.
However, modifying the model for steady state predictions is quite straightforward.
The content of the thesis can be summarized as follows:

In Chapter 2, the energy integral equation method – acoustical radiosity (AR) –
is presented both in an analytical and in a numerical version. The evaluation of
the form factors, that appear in the numerical version, is discussed and a simple
algorithm is proposed for the form factors between a pair of triangular elements.

In Chapter 3, the principles of the image source model (ISM) are presented both
for rectangular and for arbitrary polyhedral rooms. The so important validation cri-
teria for the image sources are described and the structure of a typical ISM algorithm
is presented.

Chapter 4, is the central part of the thesis, where AR and the ISM are com-
bined in a unified model that handles diffuse and specular reflections. Initially, the
discretized form of the energy integral equation is reformulated to include specu-
lar reflections. Afterwards, an algorithm that implements the generalized energy
integral equation is developed and several variations of it are discussed.

The algorithm is investigated theoretically in Chapter 5. The conservation of
energy, according to Sec. 1.4.2, is discussed through several room case studies. In
addition, the variation of room acoustic parameters as a function of the scattering
coefficient is investigated.

In Chapter 6 the combined model is validated with measurements in a room
scale model and with published data from the music studio in the German National
Metrology Institute (PTB). The room corresponds to the third phase of the Round
Robin process1 [21, 22], which aims to help room acousticians to evaluate their
prediction software.

Discussion about the advantages, disadvantages, assumptions and potential of
the proposed model is kept for the last chapter of the thesis. Possible future work
is also presented.

1http://www.ptb.de/en/org/1/16/163/roundrobin/roundrob3 1.htm
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Chapter 2

Energy Integral Equation

When the reflections in a room are assumed to be purely diffuse, an energy based
method, known as Energy Integral Equation Method (EIE) or Acoustical Radiosity
(AR), can be used. The term Acoustical Radiosity is an extension of the classical
radiosity method, widely used in computer graphics [23]. The major difference
between the classical radiosity method and AR is the time dependence. The former
deals with light, whose speed can be assumed to be infinite, so that the whole
method is time-independent. The latter deals with sound, whose speed is finite,
converting the method into a time-dependent one. Except from computer graphics
and acoustics, a similar method is used in thermal radiation heat transfer [24].

AR is based on an energy integral equation derived by Kuttruff in the early
1970s [1]. This equation describes the flow of energy on the whole boundary of a
room. In almost all cases the equation should be solved numerically, which involves
discretization of the boundary into elements. For this reason AR is often referred to
as an intensity-based boundary element method [25]. The prediction of a sound field
using AR is implemented usually in two parts. In the first part, the energy history
is computed for every element on the boundary. The energy on each element is a
combination of the energy arriving directly from the source and the interactions with
the other elements due to the diffuse reflections. In the second part, the energy at the
receiver is calculated by extracting the contribution from each element. In computer
graphics the first part is named rendering and the second is named gathering . We
shall adopt these terms for our AR approach.

2.1 Assumptions and Features

AR is an energy-based method, so that any phase information is lost. Thus, the
sound waves are assumed uncorrelated. One of the main assumptions for AR is
that only diffuse reflections occur in a room. This is of course less restrictive than
the assumption of a diffuse field [20, 26]. In addition, some properties of the sound
field seem not to be affected much by a change from specular to diffuse reflection.
The Lambert’s scattering law is adopted for describing the diffuse reflections in AR.
According to this, the value of the intensity of a scattered ray, I(θ,R), at distance
R, from the point of reflection, is dependent on the reflection angle [1]:

I(θ,R) = I(0, R) cos θ (2.1)

where I(0, R) is the intensity normal to the surface. Definitely, Lambert’s law is
one way for describing diffuse reflections, but it is not unique. Other distributions
of the scattered energy could happen in real situations, but the Lambert’s law is

9



Figure 2.1: Geometry for the energy integral equation.

probably the most known and it has been extensively applied in a variety of fields
– such as computer graphics – not only in acoustics. It is the major tool for including
scattering in commercial room acoustic prediction software. However, there is no
physical background behind it. Instead, it is based on empirical observations [27].

As discussed in Sec. 1.4, certain studies about the energy decay in a room have
concluded that initially only specular refections may occur but soon the energy is
converted to diffusely reflected [20]. Thus, AR seems to be suitable for predicting
the late part of the energy decay.

Since in AR the reflections are memoryless, the gathering process is not view-
dependent. This means that no directional information is required at the receiver
and the rendering and gathering processes can be separated. If specular reflections
were involved, they should be computed simultaneously, as it happens in our com-
bined model, in Chapter 4. This feature of AR makes it quite competitive, since once
the room is rendered, the contribution at the receiver can be calculated with very low
computational cost, allowing walk-through simulations and real-time auralizations
[28].

The most prominent drawback of AR is the high computational effort for the
rendering part, because of the large number of elements used in a large room simu-
lation. In contrast, radiosity in graphic applications is very efficient because of the
time independence.

All the (energy) absorption coefficients in this study are taken to be independent
of the incident angle. For the development of the theory in this and the next two
chapters, no reference to frequency dependence is made. It will be included during
the final validation.

2.2 Formulation of the Energy Integral Equation

Figure 2.1 illustrates an arbitrary room boundary with two elements dS and dS′

marked on it. Following Nosal et al., [28] we denote the position vectors for these
elements by r and r′. The vector connecting the elements dS and dS′ is denoted by
R and the corresponding distance by R. The angles formed by R and the dS, dS′

normals are θ and θ′ respectively. The source in the room is denoted by Q and the
receiver by P .

10



In the following, B denotes the radiation density , that is, the rate of energy,
leaving a unit area of a surface [1, 28]. The radiation density should not be confused
with the radiation intensity, even if they have the same units [W/m2]. The latter is
angle dependent while the former is not. The radiation density of a point results by
integration of the intensity, I, over a hemisphere, h, of radius R, surrounding the
point [28]:

B

(
r′, t− R

c

)
dS′ =

∫
h
I(θ′, R, t)dS (2.2)

and by applying Lambert’s law:

B

(
r′, t− R

c

)
dS′ = I(0, R, t)

∫
h

cos θ′dS (2.3)

For the present formulation the air absorption is neglected. It will be included in the
discretized form, in the next section. When only diffuse reflections are taken into
account, the radiation density at a point r on the boundary, at a particular time is
the sum of the contributions from all surface differential areas dS′ and the direct
contribution from the source. If the last is denoted by BQ, the resulting radiation
density at the point r is given by Kuttruff’s energy integral equation [1, 26]:

B(r, t) =

∫
S
ρ(r)K(r, r′)B

(
r′, t− R

c

)
dS′ +BQ(r, t) (2.4)

where the term R/c accounts for the corresponding time delay between points r and
r′. ρ(r) is the (energy) reflection coefficient at r and K(r, r′) is the reflection Kernel
between points r and r′ [26]. Assuming that the diffuse reflections are described by
the Lambert’s law, the reflection kernel reads:

K(r, r′) =
cos θ cos θ′

πR2
(2.5)

If the source Q is omnidirectional and has power WQ, the direct contribution to
the elements on the boundary is given by:

BQ(r, t) = WQ

(
t−

RQ
c

)
cos θQ
4πR2

Q

ρ(r) (2.6)

where now RQ is the distance between the source and point r on element dS and
RQ/c represents the corresponding delay.

2.2.1 Energy at the Receiver

Once the rendering part has been finished, i.e., B(r, t) is known for all positions r as
a function of time, the energy density at the receiver can be calculated by collecting
all the information from the boundary:

E(t) =
1

πc

∫
S
B

(
r, t− RP

c

)
cos θP
R2
P

dS + EQ(t) (2.7)

where the direct contribution from the source reads:

EQ(t) =
1

4πcR2
P,Q

WQ

(
t−

RP,Q
c

)
(2.8)
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2.3 Discretization

Except from a few cases, such as the spherical or flat room, described by Kuttruff
[1], eq. (2.4) does not have a closed form solution and needs to be solved numerically.
For that purpose, the boundary of the room is subdivided into planar elements i,
each of area Si. The elements should be small enough to justify the assumption
that the radiation density remains constant within each element [20]. Let the total
number of elements be N . According to Nosal et al. [28], eq. (2.4) can be discretized
in space as:

Bi(t) = ρi

N∑
j=1

Bj

(
t− Ri,j

c

)
Fij +Bi,Q(t) (2.9)

where Ri,j is the distance between the centroids of i and j and Bi,Q(t) is the di-
rect contribution from the source. The reflection kernel, given by eq. (2.5), is now
integrated over both surfaces Si and Sj . This double surface integral is called form
factor between the elements, i and j:

Fi,j =
1

Si

∫
Si

∫
Sj

K(r, r′)dS′dS (2.10)

The form factor represents the portion of energy that leaves element i and is received
by element j. As a consequence, summing up all the form factors from element i
to all the other elements of the room boundary should give one, in order for the
conservation of energy to apply:

N∑
j=1

Fij = 1 (2.11)

This is one of the fundamental properties of the (diffuse) form factors. Another
more trivial fact is that coplanar elements do not interact with each other so that
their form factor is zero. This is a direct consequence of the Lambert’s law, but
physically it is not totally correct, because grazing incidence [1] cannot be modeled.
The reciprocity property also holds for the form factors:

SiFi,j = SjFj,i (2.12)

The factor 1/Si in eq. (2.10) implies an averaging over the area of element i. If the
integrand in eq. (2.10) is assumed to vary very little over element i, the area-to-area
form factor can be approximated by a differential area-to-finite area form factor:

Fi,j ' Fdi,j =

∫
Sj

K(r, r′)dS′ (2.13)

This formula is called configuration factor [23] and it is widely employed in computer
graphics, for reducing the computational cost of the rendering algorithms. The
configuration factor is usually evaluated by a method called hemi-cube, very popular
in computer graphics for its efficiency [23].

The energy is assumed to be attenuated exponentially when the sound travels
the distance R in the air. The air absorption is represented by the factor e−αmR,
where αm is the air absorption exponent. Some typical values are given in Table
2.1. Including this in the discretized form of eq. (2.4), we get:

Bi(t) = ρi

N∑
j=1

Bj

(
t− Ri,j

c

)
Fije

−αmRi,j +Bi,Q(t) (2.14)
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Relative Frequency (Hz)
humidity (%) 500 1000 2000 3000 4000 6000 8000

40 0.60 1.07 2.58 5.03 8.40 17.71 30.00
50 0.63 1.08 2.28 4.20 6.84 14.26 24.29
60 0.64 1.11 2.14 3.72 5.91 12.08 20.52
70 0.64 1.15 2.08 3.45 5.32 10.62 17.91

Table 2.1: Air absorption exponent, am in 10−3 m−1. From [1].

The direct contribution from the source to element i is obtained by eq. (2.6), with
air absorption taken into account:

Bi,Q(t) =
ρi

4πSi
WQ

(
t−

Ri,Q
c

)
Hi,Qe

−αmRi,Q (2.15)

where Hi,Q is the integral over the solid angle, Ωi,Q, subtended by the element i at
the source Q:

Hi,Q =

∫
Si

dΩi,Q =

∫
Si

cos θQ
R2
Q

dS (2.16)

Throughout the present study, the integrals over solid angles are evaluated using
the spherical triangle method, a very simple, fast and accurate approach, proposed
by Nosal et al. [28].

2.3.1 Energy at the Receiver

As in Sec. 2.2.1 once the energy on the meshed boundary has been calculated, the
energy reaching the receiver can be found by spatially discretizing eq. (2.7):

E(t) =
1

πc

N∑
j=1

∫
Sj

Bj

(
t−

RP,j
c

)
HP,je

−αmRP,j + EQ(t)e−αmRP,Q (2.17)

where

HP,j =

∫
Si

cos θP
R2
P,j

dS (2.18)

is the integral over the solid angle subtended by the element j at the receiver P .
EQ(t) is the direct contribution from the source, given by eq. (2.8).

2.4 Evaluation of the Form Factors

The double surface integral in eq. (2.10) is very difficult to evaluate analytically for an
arbitrary pair of elements i and j. However there exist some analytical formulas for
specific configurations, such as a pair of rectangular elements [29]. The form factor
literature is quiet extensive especially in computer graphics and thermal radiation
heat transfer. Many properties and well-known formulas originate from these fields,
but can be directly used in acoustics as well.

The boundary discretization of an arbitrary polyhedral room can be performed
by subdivision into polygonal elements. Schröder and Hanrahan proposed an ana-
lytical solution for general polygon-to-polygon form factors [30]. The formulation
is non-elementary, since it is based on the dilogarithm [31]. The proposed formulas
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Figure 2.2: A pair of triangular elements over which the form factor is calculated.

seem unnecessarily complicated for our purpose. Instead, since we are going to sub-
divide the room boundary into triangular elements, we present a simple numerical
approach for the form factors between two arbitrary oriented triangles.

The method is based on the parametric equation of a planar surface, that is
transformed into a parametric equation for a planar triangle. Then, an analytical
expression for the configuration factor between a differential area and a planar poly-
gon is incorporated to reduce the order of the initial four-pole integration. The last
expression is taken directly from the literature. The final combined formula gives
accurate and fast results.

2.4.1 Area to Area Integration

Starting from the parametric plane equation we can make a simple transform to
generate the parametric equation for a planar triangle. Then the double surface
integral of the form factor expression becomes a four-fold integral of the four triangle
parameters. A Gauss-Legendre numerical integration scheme is used.

The form factor expression between two elements i, j:

Fij =
1

Si

∫
Si

∫
Sj

cos θ cos θ′

πR2
ds′ ds (2.19)

can be rewritten using vector notation (Fig. 2.2):

Fij =
1

Si

∫
Si

∫
Sj

n ·R
|n||R|

−n′ ·R
|n′||R|

1

π|R|2
ds′ ds (2.20)

where Si, Sj are the areas of the elements, n, n′ are the normal vectors to the
triangles and R is the vector between two points on them:

R = (x− x′)i + (y − y′)j + (z − z′)k (2.21)

The vertices of each triangle are denoted by the index 1,2 and 3 counterclockwise,
so that the normal vector points inwards to the domain between the two triangles.

Three points are necessary for defining a plane and we have them already from the
triangle vertices. A point on the plane can be described by the following parametric
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expressions:

x = x1 + (x2 − x1)s+ (x3 − x1)t
y = y1 + (y2 − y1)s+ (y3 − y1)t
z = z1 + (z2 − z1)s+ (z3 − z1)t

(2.22)

and the vector defining the point is therefore:

r = xi + yj + zk (2.23)

where s and t are the parameters varying from −∞ to +∞. For (s, t) = (0, 0),
(x, y, z) = (x1, y1, z1). For (s, t) = (1, 0), (x, y, z) = (x2, y2, z2) and for (s, t) = (0, 1),
(x, y, z) = (x3, y3, z3). These limiting cases lead us to the conclusion that the entire
region of the triangle, bounded by the points 1,2 and 3, is described by eq. (2.22)
when the sum of the two parameters goes from 0 to 1. Hence a new parameter is
introduced, h = s + t, that varies from 0 to 1. At the same time one of the initial
parameters, lets say s, should vary from 0 to h. The remaining t parameter is the
dependent one, given by t = s−h. The triple of equations (2.22) is now transformed
into:

x = x1 + (x2 − x3)s+ (x3 − x1)h
y = y1 + (y2 − y3)s+ (y3 − y1)h
z = z1 + (z2 − z3)s+ (z3 − z1)h

(2.24)

which fully define a triangle. The double surface integral of eq. (2.20) can now be
written, according to the surface integral theory, with respect to the parameters s
and h as:

Fij =
1

πSi

∫ 1

0

∫ h

0

∫ 1

0

∫ h′

0

(n ·R)(−n′ ·R)

|R|4
|rs × rh||rs′ × rh′ | ds′ dh′ ds dh (2.25)

where rs is the partial derivative of r with respect to s and so on. Due to linearity
of equations (2.24), the vectors rs and rh become constants, so that their cross
products are constants too and can be removed outside from the integration. For
example:

rs =(x2 − x3)i + (y2 − y3)j + (z2 − z3)k
rh =(x3 − x1)i + (y3 − y1)j + (z3 − z1)k

(2.26)

which gives a constant cross product. Similarly for rs′ and rh′ . Note that now R,
as given by eq. (2.21) is considered as a function of s, h, s′ and h′. Finally, the
remaining four-folded integral to be evaluated is:

Fij =
|rs × rh||rs′ × rh′ |

πSi

∫ 1

0

∫ h

0

∫ 1

0

∫ h′

0

(n ·R)(−n′ ·R)

|R|4
ds′ dh′ ds dh (2.27)

The cross product for each triangle can be evaluated prior to the computation of
the form factors and stored in a look up table, saving a significant amount of time.

The advantage of the method is that it is extremely simple in its formulation
and can be used directly for any configuration of a pair of triangles, distant or
tangent ones. The only drawback is the four dimensional integration that should be
evaluated with a nested numerical rule. The Gauss-Legendre rule is one option.

Whatever rule is applied, care has to be taken for the integration with respect
to the s and s′ variables, since the corresponding integration limits vary from 0 to h

15



Figure 2.3: Differential area to triangle geometry.

and from 0 to h′, respectively. Consequently, it will be inefficient to keep the same
number of evaluation points the four variables in eq. (2.27). First we should decide
on the number of points for the variables with constant limits, these being h and
h′. Then, we can keep their spacing to decide the number of points for the variables
s and s′ up to the upper limits h and h′. The evaluation points are then evenly
distributed over the whole triangle area.

The present method can be efficiently used also for arbitrary placed rectangular
elements or parallelograms, just by employing directly eq. (2.22) with s and t from
0 to 1, which results to constant limits of integration.

2.4.2 Semi-analytical Formulation

The inner double integral of eq. (2.25) can be replaced by an analytical expression
for the calculation of the form factor between a differential area ds, lying on element
i, and a polygonal element j, with N vertices [24, 32]. Let us denote by Ve and
Ve+1 the vectors from the differential area ds to two subsequent vertices e and e+ 1
of the polygon. The cross-product vector between them is Ve×Ve+1 and by scaling
it so that its magnitude equals the angle between the vectors we get:

be =
(Ve ×Ve+1)

|Ve ×Ve+1|

[
π

2
− tan−1

(
Ve ·Ve+1

|Ve ×Ve+1|

)]
=

(Ve ×Ve+1)

|Ve ×Ve+1|
tan−1

(
|Ve ×Ve+1|
Ve ·Ve+1

) (2.28)

The form factor is obtained by:

Fdi,j =
1

2π

N∑
e=1

be · n (2.29)

The vector be is normal to the plane defined by the vertices e and e + 1 and the
point on the differential area ds. Evidently, VN+1 = V1. As before, n is the normal
vector of element i. When |Ve ×Ve+1| equals zero, the whole term in the sum can
be nullified manually and the summation can be continued for the next pair.

Equation (2.29) is very simple in its implementation. The computation of the
cross product between Ve and Ve+1 is the most heavy computational task, that
requires six multiplications and three additions, for each edge. But considering
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triangular elements, only three terms are required in the sum, and the ensemble of
calculations is much smaller than in the direct integration, for the same accuracy.
Combining now eq. (2.25) and eq. (2.29) and proceeding as for eq. (2.27), we obtain
the final formula:

Fij =
|rs × rh|

2πSi

∫ 1

0

∫ h

0

N∑
e=1

be · n ds dh (2.30)

During the double numerical integration, for every new value of the parameters h
and s a new point on element i is specified, using eq. (2.24) and the vectors Ve and
Ve+1 are determined.

The method is fast and very accurate with a three-point Gauss-Legendre rule.
Only a deviation of around 0.1% is observed. For a room with 1070 elements the
form factors of all combinations were 1144900 and the time required was 3 minutes
in MATLAB1. When the full formula – eq. (2.27) – was employed, the required time
was about 5 minutes, i.e., about 1.5 times longer. In any case, the computation time
is halved when the reciprocity relation by eq. (2.12) is applied. This means that we
do not need to calculate the whole N by N matrix, but only its upper or lower
triangular parts. For such a calculation, the i elements are run through, from 1 to
N , but the j elements are run from i to N . The concept will be mentioned again
and illustrated in Section 4.2.7.

In all classical AR algorithms, the form factors are computed prior to the energy
calculations and stored in a look up table, since they do not depend at all on the
conditions in the room, but only on its geometry. This strategy is followed in this
study as well.

2.4.3 Basis Functions in Form Factors

So far, we have made the assumption that the energy does not vary over an element.
But it is possible to apply a non-constant basis function in the form factor expression,
so that the energy variations over the element are taken into account. The form
factor expression is modified as:

Fij =
1

Si

∫
Si

∫
Sj

Mi(r)Mj(r
′)

cos θ cos θ′

πR2
ds′ ds (2.31)

where Mi(r), Mj(r
′) are the basis functions and r, r′ define the points on elements i

and j, respectively. Usually the basis functions are chosen to be simple polynomials,
whose boundary conditions are satisfied by the adjacency of an element with its
neighbor elements. For the case of constant basis functions, Mi(r) = Mj(r

′) = 1.
This technique is rather new in computer graphics, borrowed by finite element

method and leads to a smoother rendering than with constant functions [33]. In that
way, the need for interpolation between the elements after the initial rendering is
eliminated. However, it is important to notice that in computer graphics the result
of the calculation is the rendering itself, i.e., radiosity is used for visualizing the
distribution of light at the walls. So, it is indeed very important to obtain a fine and
smooth solution in terms of elements. On the other hand, in AR the information at
the receiver – not at the walls – is the ultimate goal. Moreover, people’s ability to
identify spatial sound differences is much more limited than their visual detection
ability. From these, it seems useless to further complicate AR by employing such
basis functions. Hence, in the this study we assume constant basis functions, which
leads to the simple form factor expression, given by eq. (2.19).

1MATLAB is a registered trademark of the Math Works, Inc.
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Figure 2.4: An example of a meshed rectangular room, with N=406 triangular elements.
Length: 8 m. Width: 5 m. Height: 3 m.

2.5 Studied Rooms

The theoretical development in the next chapters will be illustrated by examples from
two simple rooms: One rectangular and one irregularly polyhedral. Henceforth, we
will refer at the rooms simply with the names rectangular and irregular. The rooms
are meshed using a two-dimensional mesh generator, developed by Per-Olof Persson
and Gilbert Strang in the Department of Mathematics at MIT. The program is called
DistMesh and is written in MATLAB2. This code is able to subdivide a surface into
triangular elements but it is not a general surface mesh generator, i.e., it does not
account for the orientation of the surface. Thus, another code was constructed to
treat the three-dimensional case of the room. The code rotates the coordinate system
of each wall, using its rotation matrix, so that the wall coincides with the xy plane.
The mesh generator is then applied and the elements are produced according to this
plane. All the corresponding nodes are finally rotated back to the initial coordinate
system, using the inverse rotation matrix.

Two examples of the meshed rooms are illustrated in Figures 2.4 and 2.5. The
first room is a hypothetical rectangular one, while the second one is a representation
of a real scale model with 7 totally reflective walls and a volume of 0.452 m3. This
room is made from acrylic glass and represents a reverberation chamber, for 1/10
scale measurements. It is available in the Acoustic Technology laboratory, at the
department of DTU Electrical Engineering. However, in this study we are interested
in modeling the behavior of the room and not in obtaining actual results. The scaling
factor of the room can thus be ignored and the room can be treated just as a very
small full scale one.

2http://persson.berkeley.edu/distmesh/, http://math.mit.edu/ persson/mesh.
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Figure 2.5: An example of a meshed polyhedral room, with N=338 triangular elements. The
illustration corresponds to a scale model, available in the Acoustic Technology laboratory,
at the department of DTU Electrical Engineering.

x (m) y (m) z (m)

Qrec 3.0 2.5 2.0
Prec 6.0 1.5 2.0
Qirr 0.3 0.2 0.2
Pirr 0.4 0.7 0.5

Table 2.2: Source-receiver positions for the rectangular and the irregular room.

The rectangular room can be easily subdivided directly into rectangular elements,
without using the DistMesh function. The work by Miles [34] is based on rectangular
rooms and it provides simple expressions for the form factors, between rectangular
elements, that can be easily integrated numerically. An analytical expression for the
integrals over solid angles is derived as well. Miles was one of the first using AR for
room acoustic predictions and his study covered both the steady and transient states.
The numerical integration of the form factors by Miles can be easily validated with
the analytical formulas by Gross et al. [29]. The agreement is very high, depending
on the numerical integration method used.

Calculated energy decay curves for the two rooms are illustrated in Figures 2.6
and 2.7, as an example, for uniform absorption coefficient equal to 0.4. The energy
decay curve is obtained by Schroeder integration (see App. A). The upper axis shows
how many mean free paths are included at the respective time of the lower axis, i.e.,
it shows the average number of reflections up to time t, given by the dimensionless
number tc/〈R〉. Source and receiver are placed according to Table 2.2.

For the rectangular room two calculations were performed. In the first one,
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Figure 2.6: Rectangular room. Decay curve predicted by AR for source-receiver positions
from Table 2.2. : Analytical evaluation of form factors and integrals over solid angles.

: Numerical evaluation of form factors and integrals over solid angles.

N = 486 rectangular elements were used. The form factors were calculated analyti-
cally by the formulas from Gross and the integrals over solid angles were calculated
according to Miles. In the second calculation N = 406 triangular elements were used,
applying the DistMesh function, as illustrated in Fig. 2.4. The form factors were cal-
culated according to Sec. 2.4 and the integrals over solid angles were calculated with
the spherical triangle method. The time discretization in both calculations were
performed with a sampling frequency of 4000 Hz. The decay curves are very close
to each other. The form factor evaluation, according to Sec. 2.4, and the spherical
triangle method seem to approximate well the analytical expressions by Gross and
Miles, respectively.

The calculations in the irregular room were performed with N = 338 triangular
elements. The form factors were evaluated according to Sec. 2.4 and the integrals
over solid angles with the spherical triangle method. The calculation time for the
form factors was 17 s.

After a transition time, the curves follow an exponential decay in both rooms,
as expected for a diffusely reflecting boundary [20, 26, 34]. The exponential decay
is translated into a straight line in logarithmic scale. The reverberation time can be
evaluated by this straight part of the curve. For the rectangular room the estimated
reverberation time by Sabine’s formula is 0.31 s and by Eyring’s formula 0.24 s.
Evaluating directly the slope of the curve, we obtain reverberation time 0.27 s. For
the irregular room the estimated reverberation time by Sabine’s formula is 51.7 ms,
by Eyring’s 40.5 ms, while by direct evaluation of the slope of the curve we get 45.6
ms. The dashed red and dashed-dotted green straight lines in Fig. 2.7 indicate the
energy decay according to Sabine’s and Eyring’s theory, respectively. For better
visualizing the difference in the slope, Sabine’s and Eyring’s lines were chosen to
intersect the AR decay curve at -5 dB level, where it has become also a straight line.
For that reason, the reverberation time derived by the straight part of the AR curve
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Figure 2.7: Irregular room. : Decay curve predicted by AR for source-receiver posi-
tions from Table 2.2. : Decay curve according to Sabine’s theory. · · : Decay curve
according to Eyring’s theory. All curves intersect each other at -5 dB level, where the AR
curve has become a straight line.

coincides with the T30 value (see App. A).
As expected, according to Sec. 1.4.2, the reverberation time by Sabine’s formula

is much longer than from Eyring’s in both the rectangular and the irregular room,
because the average absorption coefficient is quite large. The prediction by AR lies
between these two theoretical values. AR assumes diffuse reflections but not diffuse
field. Consequently, the resulting reverberation time is expected to be longer than
the one predicted by the perfectly diffuse-field theory (Eyring’s theory). On the
other hand, the assumption for the Sabine’s theory by eq. (1.4) is not valid for the
large α applied this case, leading to far longer reverberation time, even than that
predicted by AR. The execution time of the foregoing simulations was 19 s for the
rectangular room and 16 s for the irregular room.

A picture of the AR computational performance is given in Figures 2.8 and 2.9,
as a function of the number of elements and the sampling frequency, respectively.
The calculations were performed in the irregular room with uniform absorption 0.4
and source-receiver positions from Tab. 2.2. According to equations (2.9) and (2.10)
the execution time of the AR algorithm is proportional to the squared number of
elements, N2, and directly proportional to the sampling frequency. In the first figure,
simulations were run with N = 254, 276, 338, 387, 459, 565, 699 elements and fixed
sampling frequency at 10 kHz for a 40 ms impulse response length. The execution
time increases linearly with N2. In the same figure, the variation of the predicted
reverberation time T30 and the early decay time EDT is also shown. It can be seen
that the parameters are only slightly affected by the boundary subdivision.

In the second figure, the number of elements was fixed at 338. The impulse
response length was again 40 ms and the sampling frequency varied from 2.5 to 25
kHz. Clearly, the computational time increases linearly, while the T30 and EDT
parameters are overestimated at low sampling frequencies, converging towards the
final values after 15 kHz.
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Figure 2.8: Execution time and T30, EDT values at Pirr, as a function of the squared
number of elements. N = 254, 276, 338, 387, 459, 565, 699 elements where used.
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Chapter 3

Image Source Model

A well documented approach for the study of pure specular reflections in a room is
the Image Source Model, ISM. In its principle, the reflection path of a sound ray is
replaced by a straight line connecting the receiver to the corresponding image source
[10, 12].

Let us denote by Q = [xQ yQ zQ] the original source in the room, with power
WQ. Every image source will be defined by q. We consider a room consisting of
planar walls. Initially, the original source is mirrored at every wall. This results to
the first order image sources. Every image source can now suffer a new mirroring
at all walls, except from the wall that created the image source. This will result to
the second order image sources. The same process is repeated as many times as we
want, until a desired maximum order of reflection is achieved. It is convenient to call
daughter source every new image source and mother source its predecessor. In this
chapter, each image source is characterized by a sequence of indices corresponding
to the walls involved in its production.

The ISM is mainly used for sound pressure calculations. It is a really useful
tool, since phase shifts can be included, resulting to an impulse response that can be
directly used for room auralizations. However, the calculations can be also performed
in terms of energy, similarly to AR. Apparently, the phase information is lost. Since
the ultimate goal of this study is to combine the ISM with AR, only the energy
approach is considered.

Every time a source is mirrored back from a wall, its power is attenuated by the
reflection coefficient, ρ, of the wall. In an image source sequence, the power of the
last image source has been attenuated by the product of all reflection coefficients of
the precedent reflections. This product is called source factor.

3.1 Assumptions and Features

The most important assumption of the ISM is that all reflections are treated as
purely specular. This involves errors in application to real cases, because almost
nowhere can somebody find a purely specular surface. But even with the assump-
tion of specular surfaces, the ISM is an exact method only if the walls are hard, that
is, totally reflective. As long as the walls are absorbent, the ISM remains an ap-
proximation of the sound field, with analytically definable errors in the elementary
process of reflection of a sound wave from a surface [11].

As happens with most geometrical acoustic models, the ISM does not take into
account the expansion of the wave front as it travels away from the source. Thus, the
wave nature of sound is not properly modeled. Moreover, even if some algorithms
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of the ISM take phase into account, they usually have to simplify the problem by
adopting angle independent reflection coefficients, leading to further errors. In this
study, the reflection coefficients are also considered angle independent.

On the other hand the ISM is a really useful tool for investigating the acous-
tics in complicated rooms, giving highly detailed impulse responses. The model is
fully deterministic, because all possible reflections from the source can be predicted
without statistical means, as is the case for ray tracing.

Handling all possible reflections can be a very time consuming task for arbitrary
polyhedral rooms. The number of image sources grows exponentially with the order
of reflection. The computational cost of the method is very high, because each source
has to be checked whether it is valid or not (see Sec. 3.3).

3.2 The ISM in a Rectangular Room

The application of the ISM in a rectangular room is quite straightforward and very
efficient, since the positions of the image sources follow a regular pattern that can be
easily calculated. Let us denote the room dimensions by Lx, Ly and Lz. In compact
form, the image source positions are usually described as:

(x, y, z) = (±xQ + 2lLx, ±yQ + 2mLy, ±zQ + 2nLz) (3.1)

where l,m, n = 0, 1, 2, . . .. All combinations given by (3.1) lead to valid reflection
paths and thus the time consuming visibility tests can be omitted. The expression
in eq.(3.1) can be transformed to a more convenient form [35]:

x = (−1)lxQ +

[
l +

1− (−1)l

2

]
Lx, (3.2)

y = (−1)myQ +

[
m+

1− (−1)m

2

]
Ly, (3.3)

z = (−1)nzQ +

[
n+

1− (−1)n

2

]
Lz (3.4)

where again l,m, n = 0, 1, 2, . . .. The source factor of each image source is given by:

rq = ρx1ρx2ρy1ρy2ρz1ρz2 (3.5)

where

ρx1 = ρ
| 1
2
l− 1

4
+ 1

4
(−1)l|

x=0 , ρx2 = ρ
| 1
2
l+ 1

4
− 1

4
(−1)l|

x=Lx (3.6)

is the reflection coefficients for sides x = 0 and x = Lx, and similarly for the
other two dimensions. Except from the lack of validation checks, the ISM in a
rectangular room is facilitated by the fact that no mother sources should be stored
for the creation of the daughter sources. In Figure 3.1 a typical reflectogram has
been computed using this algorithm, for the rectangular room and source-receiver
position described in Section 2.5. The regular pattern of the image sources is obvious
in the late part of the response, where groups of equally spaced bins are present. The
energy is specularly reflected between the parallel planes of the room in a repeatable
way. Hence, the decay has a lower slope at the late part, than in the beginning, as
illustrated in Figure 3.2, in consistent with the analysis in Sec. 1.4. The lower slope
appears after the “knee” point at 0.1 s.

In Chapter 4 the algorithm for ISM in rectangular rooms is used for validating
the more complicated algorithm for the ISM in arbitrary polyhedral rooms.
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Figure 3.1: Reflectogram predicted by ISM for the rectangular room described in Sec. 2.5.
Uniform absorption coefficient equal to 0.4. Source-receiver from Tab. 2.2.
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Figure 3.2: Decay curves predicted by AR and ISM for the rectangular room described
in Sec. 2.5. : AR. : ISM. Uniform absorption coefficient equal to 0.4. Source-
receiver from Tab. 2.2.
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3.3 The ISM in a Polyhedral Room

In the general case of an arbitrary polyhedral room, the ISM proves to be very time
consuming when a long impulse response is to be predicted. The number of image
sources follows an exponential growth, with increasing order. If the number of walls
in the room is Nw, the number of image sources up to order o is [1]:

Nq = Nw
(Nw − 1)o − 1

Nw − 2
(3.7)

For example, a room with 8 walls would require almost 156864 image sources for 6
orders of reflections. However, only a small part from the ensemble of image sources
contributes to the impulse response. Most of the calculated image sources are not
valid, i.e., they do not correspond to a feasible reflection path. Therefore, the most
consuming task in the general ISM is to filter out all the unwanted image sources.

Figure 3.3 illustrates the validity test for two second order image sources, as de-
scribed compactly in [10, 13]. Let us focus on the image source q12. Its indices reveal
that the last mirroring was performed on the 2nd wall. First, the line connecting
P and q12 is formed. The intersection point, x, of this line and the plane defining
wall No 2 is inside the actual polygon that defines the wall. Subsequently, the line
connecting x with the first order image source, q1 is formed. The intersection point,
y, of the line and the plane defining wall No 1 is again inside the corresponding
polygon. Since all the intersection points of the image chain up to q12 are inside the
corresponding walls, the image source q12 can be said to be valid or in other words
visible. The same task should be performed for any image source, starting from
the last reflection towards the receiver and going back to the previous reflections
– mother image sources – and the corresponding intersection points, until the chain
is finished. If at least one intersection point is out of the wall edges, the tested image
source should be discarded. This is the case for the image source q21. The first line
from P to q21 intersects the plane of wall No 1 at point z, out of the wall boundaries.
As a result the reflection cannot be formed and the image source should be omitted.

3.3.1 Interrupt Criteria

The foregoing validity test is probably the most known among programmers of the
ISM. However, it is apparent that all the image sources of a reflection path have
to be created first before the validity test is applied. Consequently, a quiet large
number of combinations should be created and only a small portion of them are
feasible.

Vorländer in the late 1980s [13] introduced the use of ray-tracing in finding the
valid image sources. The concept is that when emitting a large number of rays from
the source, some of them are detected by a sphere around the receiver. The captured
rays correspond to feasible reflections, therefore to valid image sources. As a result,
only the valid image source combinations are generated. Once all the significant
image sources have been detected, the ray-tracing program is no more used and the
impulse response is calculated directly via the ISM. This method, that was given
the name hybrid method [5], became very popular for its efficiency and commercial
softwares, were based on it. The well known commercial software ODEON uses a
modified version of the hybrid method 1.

Mechel [11] proposed a number of checking operations that facilitate the gener-
ation of sources, so that only valid combinations are created, without use of ray-

1http://www.odeon.dk/pdf/OdeonManual10.pdf
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Figure 3.3: An example of valid and non-valid image sources. The images q1, q2 and q12 are
valid ones, while the image q21 is not. The bold crooked line denotes the feasible reflection
path.

tracing. Mechel performs these checking operations by a list of interrupt criteria.
He argues that with the application of such criteria the computational load can be
reduced dramatically and many orders of reflections can be handled, even in rooms
with many walls. According to Mechel, the ISM deserves more attention in room
acoustic simulations, because of its deterministic nature. Some of the Mechel’s inter-
rupt criteria, had been proposed by Borish [10], some time ago. The main interrupt
criteria, partly used in this study are listed below:

Inside Criterion Every mother source should always be mirrored outside from
the reflecting walls. As a result, the daughter sources are placed further and further
away from the original room walls. A direct consequence of the inside criterion is
that a mother source can never be mirrored back to the wall that was used to create
it. The inside region is defined by the direction of the normal vector of the wall.

Visibility Criterion This is the most important criterion in the determination of
valid image sources and in the creation of new ones. It actually works both for the
receiver P and the walls. Referring again to Figure 3.3, the receiver is visible from
the source q12, since the straight line from the source towards the receiver passes
through the wall boundaries. The image source can be said to be effective for the
receiver. In the same way, the wall No 2 is visible from the image source q1. If a wall
is not visible from a source no reflections can be produced on this wall and thus no
daughter image source. This is a very important consideration, because instead of
storing both q1 and q12 and checking the validity of the final path, a wall visibility
test can be applied for q1, before generating q12.

An effective polyhedron can be employed, defined by the planes that pass through
the point image source and the edges of the wall where it was reflected. The effective
polyhedron is similar to the polygonal pyramid, used by Mechel and defines the valid
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Figure 3.4: Two effective polyhedra as they appear in a ground plan of a room. : For
the first order image source. : For the second order image source. The normal vectors
define the inside region.

region of an image source, so that every receiver inside this, is affected by the
source. In Figure 3.4 an example of two effective polyhedra is illustrated. The
drawing represents a ground plan of a room, with the first order image source for
the mirror wall No 1 and its daughter image source with respect to the mirror wall
No 5. The effective polyhedron for the first image source is defined by the blue
lines and it is apparent that the whole room domain and walls are visible by the
source. In contrast, only wall No 4 is fully visible by the second image source, while
wall No 3 is only partly visible. The inside region of the polyhedron is defined by
the directions of the plane normal vectors. An effective polyhedron can be fully
represented by the plane equations of the surfaces bounding the polyhedron. Hence
it is enough to store all the four plane parameters of the surfaces.

According to Fig. 3.4, the 2nd order mother source will produce daughter sources
only behind walls No 3 and 4. Apparently, a problem arises for the partly visible wall
No 3. Even if a source is produced for it, this is not valid for all the wall region. As
a consequence, later reflections from this source would be problematic. A dilemma
arises now, whether to accept or not this image source. According to Mechel, an
accurate solution implies that the wall should be subdivided into two new walls, so
that the valid region of the image source will be restricted by the visible part of the
wall. Of course this dynamical definition of the walls would raise the computational
load. Mechel proposes a compromise between efficiency and accuracy by considering
only the centroid of the wall. If it is inside the effective polyhedron, then the wall is
considered visible. Another more flexible approach is to check whether the visible
part of the wall exceeds some size limit, in order to be accepted. This size limit
could be a preset portion of the full wall. In Chapter 4 some variations of these
approaches are employed.

It is important to note that an image source chain is terminated when a wall
is not visible by the mother source, but is not terminated when the source is not
effective for the receiver. It is likely that one of its descendants will be effective.

Proximity Criterion The desired duration of the impulse response corresponds
to a specific distance when multiplied with the speed of sound. Borish [10] suggests
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Figure 3.5: Reflectogram predicted by ISM for the irregular room described in Sec. 2.5.
Uniform absorption coefficient equal to 0.4. Source-receiver from Tab. 2.2.

to check if the distance between the generated image source and the receiver is
larger than the impulse response distance, so that image sources beyond this can be
omitted.

Source Factor Criterion Mechel [11] suggests to neglect any image source whose
source factor is less than a preset limit. This means that the power of the source is
not able any more to contribute significantly at the impulse response.

3.3.2 The Algorithm Structure

In 1988, Lee and Lee [12] proposed an algorithm for the ISM, based on mirroring
the whole room and not only the source, behind each wall. A transformation matrix
is generated for each wall that links the original coordinate system to the coordinate
system of the corresponding image room. The writers claim that employing this
matrix there is no need for storing the mother sources. Actually, this seems not
to be so beneficial, since the high computation load compensates for the required
storage.

According to Mechel [11] the standard ISM can be implemented in three for-
loops. The outer most loop runs over the order of reflection, o, up to a maximum
limit, omax. The middle loop runs over the mother sources of the previous reflection
order and the innermost loop runs over the walls of the room. In this loop all the
mirroring and checking operations are included. The generated valid sources are
stored in a table, that is looked up during the next order, for creating the daughter
sources. Obviously, the length of table is progressively increased. Even if a source
is not effective for the receiver, it should be stored. In this standard algorithm, the
whole ensemble of image sources, for all orders is stored in a final table, which is
accessed afterwards for calculating the contributions at the receiver.

Application of the ISM algorithm to the irregular room introduced in Sec. 2.5
gives the response of Figure 3.5. The absorption coefficient and source-receiver
positions are the same as in Sec. 2.5. The corresponding energy decay curve is
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Figure 3.6: Decay curves predicted by AR and ISM for the irregular room described in
Sec. 2.5. : AR. : ISM. Uniform absorption coefficient equal to 0.4. Source-
receiver from Tab. 2.2.

presented in Figure 3.6, where it is compared with the corresponding curve by AR
(Fig. 2.7).

Up to 6 ms, the decay follows the exponential law predicted by AR. After that
time the slope becomes lower, as in the rectangular room. Even if the room has an
irregular shape, the fact that only specularly reflecting surfaces are used prevents
the decay to be exponential to the end.

The fluctuations in the curve are justified both by the specular nature of the ISM
but also by the way the valid image sources are generated. According to Sec. 3.3.1
we have to compromise between efficiency and accuracy by choosing an approximate
way of accepting or discarding a reflecting wall for generating a new image source.
This involves some errors by choosing either less or more image sources than the
“actual” number. We will return again to this important topic in Chapter 4.
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Chapter 4

Combined Model

In reality, neither purely diffuse nor purely specular reflections occur in rooms. In-
deed the situation is a mixture of these two extremes. Thus there has been a need
for developing room acoustic models that are able to handle successfully this mixed
case.

Several authors have presented hybrid models to this direction. In 1993, Lewers
[36] proposed a combination of beam tracing and AR. In 1996, Dalenbäck [6] applied
an approximate cone tracing to a multipass algorithm that accounts for the diffuse
reflection by the notion of secondary sources. Later on, in 2000, Kuttruff [37] used
the ISM to account for the specular reflections in AR and he solved the problem
analytically for a stationary field in a flat room. But actually, before Kuttruff’s
article, two other researchers, Baines in 1983 [38] and Korany in 2000 [39] had
proposed the idea of a combined ISM and AR method for predicting the sound field
in a rectangular room.

A more recent approach for an integrated treatment of diffuse and specular
reflections is based on the bidirectional reflectance distribution functions (BRDFs), a
term taken directly from computer graphics. The approach was proposed by Siltanen
[40]. The BRDFs describe the directional reflected pattern of a surface as a function
of the incoming angle (Fig. 4.1). By discretizing the directional information into
a number of solid angles, the specular relations between the elements in a meshed
boundary can be studied. Of course, this discretization of the outcoming angles
involves errors in the approximation and an increasing number of discretized angles
is needed for a high accuracy. The detection of the specular components by a point
receiver employs ray tracing over a sphere around the receiver.

4.1 Formulation of the Problem

The combination of the ISM and AR is the basis for our approach. However, unlike
the previous attempts, our goal is to derive an algorithm that will be able to handle
arbitrary polyhedral rooms. We adopt the name CARISM (Combined Acoustical
Radiosity - Image Source Model) for the proposed method. The exponential growth
of the number of image sources, with increasing order of reflection, as described in
Sec. 3.3, has prevented many acousticians to apply the ISM for practical purposes.
However, as described in Sec. 3.3.1, careful handling of the valid image sources and
their subsequent reflections, leads to a very low number of effective image sources and
can drastically reduce the computational load. The ISM gives a full deterministic
solution and it is irreplaceable when high resolution in the echogram is desired.
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(a) BRDF (b) Discretization with 36 directional segments.

Figure 4.1: A typical BRDF graph with its discretized version used in Siltanen’s algorithm
[40].

4.1.1 Scattering Coefficient

The starting point of all relevant existing algorithms is the division of reflected
energy from a surface into specular and diffuse components. When a ray, carrying
some energy, hits a surface, a portion is absorbed and the remaining is reflected. As
usual, the absorbed energy is described by the absorption coefficient, α, while the
reflected is represented by the reflection coefficient, ρ = 1−α. This reflected portion
of energy can be further separated to a diffuse part, characterized by the scattering
coefficient , s, and a specular part (1− s). As a result, the diffusely reflected energy
is a fraction of s(1− α) with respect to the impinging energy, while the specular is
a fraction of (1− s)(1− α) [18]. Conservation of energy implies that:

α+ s(1− α) + (1− s)(1− α) = 1 (4.1)

The foregoing tactic is followed in our study, even though its validity is not fully
justified and remains a coarse interpretation of the complicated reflection phenom-
ena, taking place on a surface. It should be noted that this division is artificial.
The reflection pattern can be whatever, from a perfect circle (diffuse Lambert’s law)
to one line (specular reflection) and is better described by the BRDFs. However,
the only available data providing diffuse information for materials are the scattering
coefficients. There is a long literature of papers and standards on measuring the
scattering coefficients [18] and on some numerical methods as well, providing theo-
retical values [41]. For these reasons, in this study we adopt the notion of scattering
coefficient as a practical way to think of diffuse reflections. Note that eq. (4.1) is
feasible as long as sound absorption and sound scattering are independent of each
other [19].

Figure 4.2 illustrates all combinations between ideally diffuse and ideally specu-
lar reflections. These are the primitive cases that when combined can give various
complicated reflection paths. The first case describes two subsequent specular re-
flections and it is the main block of the ISM. The last case represents only diffuse
reflections which are implemented by AR. The mixed cases, in the middle, can be
handled by the combination of AR and the ISM. It should be clear that the energy
is irreversely transfered from the specular model to the diffuse one. This means that
an incident sound ray is possible to be converted into a bundle of diffuse rays, but
the reflection of diffuse energy can never re-form a single sound ray [20].
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Figure 4.2: The four possible reflection combinations, when we assume that the real case
is a mixture of ideally specular and ideally diffuse reflections. S: specular reflecting surface.
D: diffuse reflecting surface. Picture taken from [27], after Dalenbäck [6].

4.1.2 Image Sources

Let us consider first the original source, Q, in the room and a receiver P . The source
produces specular reflections at the walls that can be accounted for by creating all
image sources up to a desired order. Every time a ray from the original source hits
a wall, its energy is reduced by (1− s)ρ. If o denotes the order of the image source
under consideration and l denotes the intermediate reflections up to order o, then
each reflecting wall can be represented by wl, which takes values from 1 to the total
number of walls. With this nomenclature, the source factor, rqk , of an image source,
qk, is given by:

rqk = (1− sw0)ρw0 · (1− sw1)ρw1 . . . (1− swo)ρwo =
o∏
l=0

(1− swl
)ρwl

(4.2)

The special product (1−sw0)ρw0 = 1 symbolizes the direct contribution, so that the
original source, Q has a source factor of 1. The subindex k = 1, 2, . . . denotes the
numbering of the image source. When k = 0, we define q0 ≡ Q. The purely specular
energy density reaching any receiver P in the room is computed as the sum of the
contributions from all sources, original and image:

Eqk(t) =
1

4πc

K∑
k=0

rqk
R2
P,qk

WQ

(
qk, t−

RP,qk
c

)
e−amRP,qk (4.3)

where WQ(t) is the power of the original source and RP,qk is the distance between
any source and the receiver, that results to a time delay, t = RP,qk/c. The upper
limit of the sum K is the total number of image sources.

The boundary of the room is meshed into elements, in order for the radiosity to
be applied. Each of the elements acts as a new receiver of specular reflected energy
from the image sources. The specular component of the radiation density for each
element, together with the direct contribution from the source, is thus:

Bqk,i(t) =
siρi
4πSi

K∑
k=0

rqkWQ

(
qk, t−

Ri,qk
c

)
Hi,qke

−amRi,qk (4.4)

where Si is the area of the element, Ri,qk is the distance between the source and the
element and:

Hi,qk =

∫
Si

cos θk
R2
i,qk

dS (4.5)

is the integral over the solid angle subtended by the element at the source. As in
Section 2.3, the exponential factor accounts for the air absorption. At this point it
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should be stressed that the indexing k and the total number K of the image sources
might not be the same in both equations (4.3) and (4.4), since different sources
are effective for the receiver and different for each element. The notation

∑K
k=0 is

adopted just to symbolize the ensemble of image sources for any receiver, without
further complicating the nomenclature.

4.1.3 Image Elements

Dalenbäck clearly states that every diffuse reflection can be represented by a new
source which sends out rays omnidirectionally, throughout the hemisphere that is
defined from the surface and the domain in front of it. Dalenbäck calls this source
secondary source [6]. The energy of this source is equal to the incident energy
attenuated by the diffuse reflection portion sρ. The radiosity governing equation
– eq. (2.9) – is itself an implementation of the concept of secondary sources. Each
element serves as a source that emits energy towards all the other elements in the
boundary. The way the energy moves around the meshed boundary is governed by
Lambert’s law, which is applied through the form factors between all the element to
element combinations.

In Dalenbäck’s approach, the diffuse surfaces in a room are divided in a number
of square patches, functioning as the secondary sources. However, the whole method
is ray tracing based. Initially, the original source sends a high number of rays that
hit the room surfaces randomly. A ray can be reflected specularly and it continues
its course, attenuated by the specular reflection fraction (1 − s)ρ. But whenever it
encounters a diffuse patch, a record is made that the patch should act as a secondary
source. Later on, the diffuse patch emits another bundle of rays that begin their
own course in the room. Both the original source and the secondary sources work
in a stochastic manner, that governs the ray tracing method. Every source sends a
finite number of rays and we are never sure that they will hit all the patches on the
surfaces. Moreover, the diffuse reflection is represented itself by a finite number of
rays and not by a continuous function.

Radiosity seems to be much more accurate than this. There is a concrete equation
for the energy exchange between the elements, the form factor integral. And if the
form factor is evaluated accurately, then we can obtain a good overview of the diffuse
energy behavior along the elements. Of course, the finer the mesh on the boundary
the more accurate the result, because, as it was discussed in Sec. 2.2 the energy is
assumed to be constant over an element, which is itself an approximation.

Now, let us adopt the concept of rays for a moment, as a useful tool to study the
energy movement at the room. Figure 4.3 illustrates the mixed diffuse and specular
case. The black ray follows the specular reflection path originating from the original
source. Every time it is reflected on a partially diffuse surface, it gives rise to a
secondary source of rays, representing the diffuse reflection. These secondary sources
are placed at the center of the elements r, r′ etc. But every new diffuse ray from the
secondary sources, like the blue one, may follow its own path of specular reflections,
accumulating energy to the surfaces it meets. If a ray (from a secondary source)
meets a fully diffuse surface, its course is terminated.

Figure 4.4 shows schematically the energy flow in a room, when modeled with
both specular and diffuse reflections. The upper and lower boxes emphasize the fact
that the energy is supplied by the source and it is continuously absorbed by the
surfaces, with no dependence on the kind of reflection. Thus, in terms of the total
energy decay in the room, the middle boxes can be considered as a “black box”,
where the energy is absorbed with the one or the other way. This is very crucial, for
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Figure 4.3: Geometry of diffuse and specular reflections in a room. : Specular re-
flection path from the original source. : Specular reflection path of a secondary ray,
originating from a diffuse reflection. : Direct contribution from the original source at
the receiver.

the validation of the model. However, as it was discussed in Sec. 1.4, the assumption
that the total energy of the room remains the same, is valid only when at least some
of the surfaces lead to diffuse reflections [19, 20]. Later on, a direct comparison of
the combined-model responses with the pure AR ones, will confirm that the energy
flow is correct.

In radiosity we are not dealing with point sources but with whole elements in
order to preserve the advantage of form factor relation between them. Thus, the
study of subsequent specular reflections of the diffuse reflected energy can be realized
by the notion of image elements, in a similar way to the image sources of the original
source [37]. There are now two distinct differences to the Dalenbäck’s approach.
First, all the specular reflections, either from the original source or the elements, are
represented by images and not rays, thus making the approach fully deterministic.
Second, the diffuse part is handled by radiosity. Lewers [36] used beam tracing for
the specular reflections and radiosity for the diffuse, but he did not account further
for the specular reflections of the beams after the diffuse reflections. In other words,
he ignored the interaction between his specular and diffuse models (the dotted arrow
in Fig. 4.4).

Figure 4.5 illustrates the principle of specular reflection by an image element.
The mirroring of the source element behind the wall, gives the full path of the first
order reflection at the receiving element. A new form factor has to be calculated
now to account for the diffuse relation between the image element and the receiving
element. Let us now adopt the notation jm for an image element of the source
element j, where m is the indexing of all image elements linked to the source element
j. For convenience, as we did in Sec. 2.3, any receiving element will be symbolized
by i.

The radiation density of each image element is the same as that of the source ele-
ment. Therefore, the contribution of each image element to a real receiving element
on the boundary is this radiation density, attenuated by sρ of the receiving element,
and by the product of the (1−s)ρ factors that were involved in all precedent mirror-
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Figure 4.4: Flow of the energy supplied by the primary source in the CARISM. When
a reflection of any kind takes place, energy is dissipated via the wall absorption. The
dashed arrow indicates that the full problem involves a diffuse-specular coupling between
the elements on the boundary.

Figure 4.5: Principle of specular reflection by an image element. The diffusely reflected
energy from the source element suffers several specular reflections afterwards that are rep-
resented by image elements.
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ing of the image element; that is, in all specular reflections of the diffusely reflected
energy from the source element. The attenuation due to the distance and the diffuse
coupling between an image element and another receiving element on the boundary,
is accounted for by the corresponding extended form factor , Fi,jm, between them.
With these in mind and using eq. (4.4), the discretized AR equation (2.14) can now
be extended to:

Bi(t) =siρi

N∑
j=1

M∑
m=0

rjmBj

(
t− Ri,jm

c

)
Fi,jme

−amRi,jm

+
siρi
4πSi

K∑
k=0

rqkWQ

(
qk, t−

Ri,qk
c

)
Hi,qke

−amRi,qk

(4.6)

where rjm is the source factor of the image element jm, up to an order o:

rjm = (1− swj0)ρwj0 · (1− swj1)ρwj1 . . . (1− swjo)ρwjo =

o∏
l=0

(1− swjl
)ρwjl

(4.7)

and wjl is, as before, the index of the reflecting wall. Again, the product (1 −
swj0)ρwj0 = 1 corresponds to the direct contribution from the source element j. The
extended form factor works similarly to the standard form factor from element i to
element j, but now, element j is replaced by one of its image descendants:

Fi,jm =
1

Si

∫
Si

∫
Sjm

cos θ cos θ′′

πR2
i,jm

ds′′ ds (4.8)

Apparently, Sjm = Sj .

A slightly similar kind of form factor, called extra form factor, has been used
before in computer graphics [42]. But, it is used only for first order specular reflec-
tions, in a radically different approach, which is based on BRDFs and discretized
incoming-outgoing angles. The extended form factor, introduced here, is a complete
generalization of the standard form factor, in consistency with the ISM approach.

In contrast to the element to element evaluation of the standard form factor that
was performed in Sec. 2.4, the double integration proves to be very time consuming,
when we deal with all the images of each element. Since the images are placed
further and further away from i, as the order of reflection is increased, the extended
form factor is expected to become progressively smaller. Moreover, the five-times
rule can be applied here, according to which an element can be modeled as a point
source, as long as the distance to the receiver is at least five times the maximum
projected dimension of the element [23]. In other words, it can be assumed that the
energy does not vary over element i and thus eq. (4.8) can be approximated by the
extended configuration factor :

Fi,jm '
∫
Sjm

cos θ cos θ′′

πR2
i,jm

ds′′ (4.9)

A straightforward evaluation of this single area integral is given by eq. (2.29). The
distance Ri,jm is now taken from the center of element i to the vertices of jm (see
Sec. 2.4.2). The foregoing simplification makes the computations two to three times
faster. Comparison of the results from equations (4.8) and (4.9) for the irregular
room with 387 elements, showed a deviation between 3 and 5 %.
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In an alternative way, eq. (4.6) can be written as:

Bi(t) =siρi

N∑
j=1

Bj

(
t− Ri,j

c

)
Fi,je

−amRi,j

+ siρi

N∑
j=1

M∑
m=1

rjmBj

(
t− Ri,jm

c

)
Fi,jme

−amRi,jm

+
siρi
4πSi

WQ

(
Q, t−

Ri,Q
c

)
Hi,Qe

−amRi,Q

+
siρi
4πSi

K∑
k=1

rqkWQ

(
qk, t−

Ri,qk
c

)
Hi,qke

−amRi,qk

(4.10)

Now, the first summation corresponds to the classical diffuse to diffuse connection
between the elements, i.e. pure AR. The second summation term accounts for the
diffuse to specular and specular to diffuse reflections. i.e., for the concept of image
elements. The third term is the direct contribution from the original source and the
last term corresponds to pure specular to specular reflections, i.e., pure ISM. Clearly,
the second is the most computationally heavy term, even though its contribution
might not be large. Indeed, the main question to be answered at chapter 5 is whether
the specular reflections of the diffusely reflected energy give any further information
in the impulse response or they could be just neglected, judged as diffuse anyway.
Note that eq. (4.6) is the compact form of eq. (4.10), where the indexes k and m
start from 0, instead of 1.

In Figure 4.6 a group of image elements (together with their normals) is shown
as an example. For the bold source element on the floor, the first and the second
order images have been computed. The construction of the image elements follows
the common rules for the construction of the image sources (chapter 3). An effective
polyhedron, introduced in Sec. 3.3, originating from the centre of the image element
can be used for defining the visible area. However, regarding the contribution of an
image element to another one, an additional rule should be applied. Apparently, any
element radiates energy towards the half space defined by its normal vector. In the
same way, another element receives energy from the half space defined by its normal
vector. As a result in order for an image element jm to be effective for a receiving
element i, their normal vectors should point towards each other. Equivalently, we
can demand that the center of each element is inside the plane defined by the other
element.

4.1.4 Energy at the receiver

The energy density at the receiver can be calculated using the same concept as for
eq. (4.6):

E(t) =
1

πc

N∑
j=1

M∑
m=0

rjmBj

(
t−

RP,jm
c

)
HP,jme

−amRP,jm

+
K∑
k=0

1

4πcR2
P,qk

rqkWQ

(
qk, t−

RP,qk
c

)
e−amRP,qk

(4.11)

where in addition to the known symbols, HP,jm is the solid angle subtended by any
element (source or image) at the receiver and RP,qk is the distance from any source
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Figure 4.6: First ( ) and second order ( ) image elements for one of the real
elements on the floor (black). The normal vectors are also shown.

(original or image) to the receiver. The double summation corresponds to the contri-
bution from the elements and their images, while the single summation corresponds
to the contribution from the the source and its images. Following eq. (4.10), we can
split the summations as:

E(t) =
1

πc

N∑
j=1

Bj

(
t−

RP,j
c

)
HP,je

−amRP,j

+
1

πc

N∑
j=1

M∑
m=1

rjmBj

(
t−

RP,jm
c

)
HP,jme

−amRP,jm

+
1

4πcR2
P,Q

WQ

(
Q, t−

RP,Q
c

)
e−amRP,Q

+

K∑
k=1

1

4πcR2
P,qk

rqkWQ

(
qk, t−

RP,qk
c

)
e−amRP,qk

(4.12)

where, as before, the first term corresponds to the direct diffuse contribution from
the elements to the receiver, i.e., the gathering process in pure AR. The second
term corresponds to the coupling between AR and ISM. That is, again a gathering
process, but from all the image elements. The third term is the direct contribution
from the original source, while the last corresponds to the contributions from its
images, i.e., pure ISM.
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4.2 Algorithm Implementation

The foregoing theoretical formulation of the problem is implemented in a multistep
algorithm, similar to that Dalenbäck has proposed [6]. Dalenbäck distinguishes
between a primary step and several successive steps. His primary step handles all
the specular reflections caused by the original source, while the next ones serve for
the distribution of the diffusely reflected energy. These subsequent steps can be
seen as refinements of the initial solution, leading to a convergence towards the final
response and a progressively saturated reflectogram.

In our case, a primary step is used only for the direct contribution from the
original source. The next iteration steps handle both the specular and the diffuse
reflections in a unified way, until the desired convergence is achieved. In every
iteration step, a longer reflectogram is produced occupying progressively a larger
part of the desired total duration. Hence, the convergence in our algorithm can be
seen as an approach to a final reflectogram. This means that after some iterations,
the reflectogram is stabilized and it does not change with further iterations, for the
specific simulated duration. The same happens for the energy decay. After some
iterations the curve has converged to a stabilized line.

The central point of our algorithm is the radiation reflectogram of each element
on the boundary. We shall adopt this name henceforth in order to describe the
values of the radiation densities as a function of time, that have been accumulated
at an element, during an iteration step. These radiation reflectograms are similar to
the lists of reflections, described by Dalenbäck [6] and the plane impulse responses,
described by Lewers [36]. The reflectograms are realized as discretized time vectors1.
Similar to the radiation reflectograms, that are linked to the elements, we calculate
the energy density reflectogram, related to the response at the receiver.

In the proposed algorithm the notions of the image and secondary sources are
merged into a unified treatment. The algorithm is based strongly on the process
of image source generation, described in Sec. 3.3.2. Recalling from this Section, the
outer-most loop works over the order of reflection, o, for which all the valid image
sources are generated. We can expand the scheme of this loop, so that in each iter-
ation, not only the corresponding image sources are generated but the contribution
from the secondary sources is also computed at the elements, simultaneously. In
other words, both the specular and the diffuse model are treated together and now
the orders of reflection become equivalent with the iteration steps. In that sense,
the AR model is implemented in an iteration process, which produces a more ac-
curate picture of the energy response at each step. Even a few steps are enough to
reveal the trend of the whole response. This seems to be quite different with the
time-dependent approach, followed by Nosal [28] and Miles [34], where AR is fully
computed for every time step.

Calculating the ISM and AR simultaneously offers a great advantage. The ter-
mination order of the image sources can be unfixed, in contrast to the standard
procedure followed [10, 11, 12]. At each iteration, the energy carried by the spec-
ular model (the image sources of the corresponding order) can be compared to the
energy in the diffuse model, so that every image source chain can be terminated at
an arbitrary order, as long as the energy contribution from the last image source is
lower than the diffuse energy on the walls. At the same time, the specular energy
of the terminated chain of image sources is transfered to the diffuse model. Conse-
quently, as the iterations proceed, less and less remaining image sources contribute

1In this chapter a vector is referred to a line matrix
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specularly until the model has been converted totally from specular-diffuse to purely
diffuse; which describes well the late part of a decay curve.

The algorithm is presented in two versions. In the first version – the main one –
the coupling between AR and ISM is neglected. In other words, the dashed arrow in
Fig. 4.4 is omitted, so that all the energy that is sent by an element is not reflected
specularly afterwards and only the direct contribution to another element is taken
into account. Thus, no image elements are involved. In the second version the full
model is implemented by adding the coupling between the image elements, as a
supplement to the main version. Strategies that reduce the computational cost are
utilized. The primary step described in Sec. 4.2.3 is the same for both versions of
the algorithm and only the diffuse part in the iteration steps is slightly different in
each one.

4.2.1 Impulsive Original Source

Since the impulse response at the receiver is the major outcome from the whole
method, the implementation of the formulas from Sec. 4.1 is greatly simplified by
assuming an original source of unit impulse. In this case, the time-dependent power
degenerates to:

WQ(t) =

{
1, t = 0
0, t 6= 0

[W ] (4.13)

which means that there is no more need to include the power of the source in the
formulas of this chapter. If the impulsive power of the source is other than one, then
the real response at the receiver is obtained by multiplying with this value.

Moreover, the air absorption can be fully neglected until the end of the calcu-
lations. Once the energy density at the receiver has been computed without air
absorption – let us call it E0(t) – the complete value is given by:

Eam(t) = E0(t)e
−amtc (4.14)

In accordance with this, the air absorption is neglected in this chapter. It will be
included again during the experimental validation of the model.

4.2.2 Discretizing Time

The desired time duration tmax for the final impulse response is discretized by a
sampling frequency fs that results to equal time intervals dt. Each time step is
now denoted by an integer n, so that the actual time at n is tn = ndt. The length
of the discretized time vector is denoted by T , so that the actual duration of the
impulse response is expressed as tmax = T dt. Now, t = 0 corresponds to n = 1.
Evidently, the higher the sampling frequency the more accurate the response is, but
the computation time becomes longer. A compromise between the duration of the
response, the accuracy desired and the computation time allowed should lead to an
optimal selection of fs. By this discretization all the delays between the elements,
the source and the receiver can be expressed by a number of time steps, i.e., cell
numbers in the energy vectors. We introduce:

• TP,qk = dRP,qk/(c dt)e, for the time steps between the receiver and any source.

• TP,j = dRP,j/(c dt)e, for the time steps between the receiver and element j.

• TP,jm = dRP,jm/(c dt)e, for the time steps between the receiver and image
element jm.
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• Ti,qk = dRi,qk/(c dt)e, for the time steps between element i and any source.

• Ti,j = dRi,j/(c dt)e, for the time steps between any element i and element j.

• Ti,jm = dRi,jm/(c dt)e, for the time steps between any element i and image
element jm.

where the operator d e defines the ceiling function. Henceforth in this Section, in
order to emphasize that the calculations are preformed in discrete time, all time
and element dependences will be denoted by [ ], instead of ( ); for example Bi(t) is
transformed into B[i, n].

4.2.3 Primary Step

The iteration process must be initiated by a primary step, where the direct con-
tribution from the source to the receiver and the elements is calculated according
to eq. (4.3) and eq. (4.4) – with k = 0. This contribution is stored at the radiation
reflectograms and the energy density reflectogram of the receiver, according to the
corresponding time delay.

It is convenient to implement the various delays involved in the equations of
Sec. 4.1 as forward accumulations. That is, the known value of any kind of source
at time step n is accumulated at any kind of receiver at time step n+ Tdelay, where
Tdelay is one of the possible delays discussed in Sec. 4.2.2. With this tactic, no initial
data are required for time steps before n = 1.

During the primary step, all the first order image sources are generated and
stored in a temporal table. However, in the next iteration steps we need to have
control over the generation of new image sources for each wall. Hence, as will
become apparent, it is crucial that we treat the AR expression in terms of walls
and the corresponding wall elements, rather than in terms of elements directly, as
we did so far. In addition, the energy contributed by a new image source should be
compared with the purely diffuse energy being present on the wall.

For that purpose, we introduce the diffuse radiation density , Bd[i, n], that records
only the energy existing in the diffuse model, without adding the contribution from
the image sources at every iteration. In the primary step, the energy is supplied
only by the original source, so that B[i, n] and Bd[i, n] are identical. In general,
knowing Bd[i, n] we can compute the diffuse radiation density of a wall , Bdw[w, n],
as follows:

Bdw[w, n] =
1

Sw

Nw∑
i=1

SiBd[i, n] (4.15)

where Sw is the area of the wall and Nw is the number of elements i on the wall
w. In a coarse approximation, but sufficient for our goal, we can ignore the delay
variations among the different elements of the wall and the source. Instead, we
assume that all the energy from the source arrives at the wall with a time delay
corresponding to the distance from its center and the point source. Similarly to all
other pairs in Sec. 4.2.2, the delay between the wall (its center) and the source is
defined in time steps as TwQ. Equation (4.4) can now be modified for the direct
contribution from the source Q to a receiving wall w:

Bdw[w, TwQ] =
1

4πSw
swρwHw,Q (4.16)
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where Hw,Q is the integral over the solid angle subtended by the wall at the original
source. It is straightforward to see that:

Hw,Q =

Nw∑
i=1

Hi,Q (4.17)

where Hi,Q is the integral over the solid angle subtended by an element at the source.
It should be noted that the wall radiation density will be used only for the

handling of the image source production. It is not a part of the actual solution,
since this is still based on the element radiation densities. The algorithm of the
primary step is summarized in Figure 4.7.

foreach receiving wall w do
foreach element i on wall do

B[i, Ti,Q] = 1
4πSi

siρiHiQ

Bd[i, Ti,Q] = 1
4πSi

siρiHiQ

end

Bdw[w, TwQ] = 1
4πSw

swρwHwQ

Generate image source qk at the mirror wall w
Compute rqk
Store qk, rqk and w

end

EQ[TPQ] = 1
4πcR2

P,Q
// direct contribution at the receiver

Figure 4.7: The algorithm of the primary step.

4.2.4 Main Algorithm - Iterations

At the end of the primary step, the radiation density vectors B[i, 1 : T ] and Bd[i, 1 :
T ], have their initial values, corresponding to the diffuse fraction of the reflected
energy. The remaining fraction is carried by the first order image source – behind
the corresponding element’s wall – which has not yet sent its contribution. Now the
first iteration step is ready to begin. Every step is divided into two parts; one for
the diffuse model and one for the specular model.

4.2.4.1 Diffuse Model

The diffuse model is implemented by running through all the elements, that serve
as secondary sources. Since in this section we assume no coupling between AR and
ISM, all the energy from element j is reflected diffusely at element i. Thus, the total
reflection coefficient ρi should be used.

Following Dalenbäck’s approach [6], we can “transfer” the radiation density vec-
tor B[j, 1 : T ] of a source element j to a new radiation vector B′[i, 1 : T ] of a receiving
element i, filtered by the delay between them, the form factor and the reflection co-
efficient. The new radiation reflectogram for element i will be much more dense
than the previous, since all the other elements j act as sources, contributing their
reflectograms. For every element j, all elements i are run through and the diffuse
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Figure 4.8: Demonstration of how the “new” radiation reflectograms work. During an
arbitrary iteration the source elements 2, 4 and 7 contribute all their history to the receiving
element 9, filtered by the form factors, the delay and the reflection coefficient of 9. Note
that the “new” reflectogram of the 9th element consists of the information from 2, 4 and 7,
without adding its own information. Its old reflectogram and thus any old information has
been discarded in the previous iteration.

contribution is stored in the new radiation density vector, according to a reduction
assignment2, for every n:

B′[i, n+ Ti,j ] := B′[i, n+ Ti,j ] + ρiB [j, n]Fi,j (4.18)

Note that this assignment implements the first term in eq. (4.10) but ρisi has been
replaced by ρi. For the present version of the algorithm, the second term in eq. (4.10)
is neglected, or in other words, it has been merged with the first term. This process
described by eq. (4.18) is similar to the primary and secondary lists used in [6].
According to this approach, the old radiation reflectograms, B[j, 1 : T ], should
contribute first to all new ones, B′[i, 1 : T ], and then updated by them, B := B′.
In the next iteration, the “new” radiation reflectograms have become “old” ones.
Now the “new” radiation reflectograms are “empty”; that is, they do not contain
any old information, since all the history of reflections has been transfered to the
“old” reflectograms. The concept is illustrated schematically in Figure 4.8.

The iteration process seems to converge quite slowly with this approach. Instead,
we can get inspired by a variant of the classical radiosity method, the progressive
radiosity method, PR, widely used in computer graphics. Both methods deal with
light, so they are time-independent, but the concepts are easily extended to time-
dependent problems. A fundamental difference occurs between these two variations.
The classical radiosity is based on the gathering operation, i.e., an element i collects
energy from all other elements j. As a result, the picture of only one element, i, is
improved at each iteration. In contrast, PR is based on the shooting operation, i.e.,
an element j acts as a source that sends energy to all other elements, simultaneously
[43]. Thus, the energy of all the elements on the boundary is updated at each
iteration3. Even if the two methods take almost the same time for a full solution, PR

2A reduction assignment is an accumulation across iterations of a loop (www.mathworks.com).
3This is the reason why this process is also called progressive refinement.
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provides acceptable results from an early stage. It is not our intension to incorporate
PR in our development, but we can adopt one of its key points. The unshot energy,
which is the energy of the source element, j, that is going to be distributed to the rest
of the elements. Once the energy has been transfered from j to the rest boundary,
it should be reset to zero.

In our case, the radiation reflectogram of the source element, j, can be charac-
terized as the unshot radiation density. Using the described concept, we can shoot
this radiation density to all other elements, i. The contribution will be accumulated
to the corresponding radiation reflectogram but without employing a “new” radia-
tion density vector, in contrast to the previous idea. All we have to do is to make
the current radiation density of element j zero, when it has shot all other elements.
Equation (4.18) simply has to be transformed into:

B[i, n+ Ti,j ] := B[i, n+ Ti,j ] + ρiB [j, n]Fi,j (4.19)

So far, it should be clear that two for-loops are used: the outer for the source
elements j and the inner for the receiving elements i. Every receiving element i will
act as a source j in a later stage of this double loop. If we had used the initial idea
with the new radiation density, B′, the gathering and shooting operations would act
separately. In other words a receiving element could shoot new information only
during the next iteration of the whole algorithm. But now, during the same double
loop, when a receiving element has turned to a source, it shoots all of its information
collected so far. Consequently, the convergence of the diffuse model is much faster
now, for the same number of iterations.

At every iteration, the receiver gathers energy from the elements in a view-
independent manner, as in pure AR. Obviously, whichever approach from the pre-
vious two is adopted, the way the receiver collects the energy will be the same,
depending on the radiation density of the source element j. Proceeding with the
first term in eq. (4.12), we get for each j and for each n:

E[n+ TP,j ] := E[n+ TP,j ] +
1

πc
B [ j, n]HP,j (4.20)

However, even if the way the receiver collects energy is the same, the rate of con-
vergence to the desired solution depends on the convergence of B [ j, n]. That is, if
eq. (4.18) is used instead of eq. (4.19), the radiation densities of the elements will
converge slower, affecting the convergence speed of the receiver’s energy.

Figures 4.9 and 4.10 illustrate the converging process for the energy density at
the receiver, when only diffuse reflections are taken into account. In the first figure
the initial approach – employing “new” radiation vectors – is applied using eq. (4.18).
In the second, the variation from PR is adopted, by eq. (4.19). Evidently, after six
iterations the last approach has given almost the full solution for the specific time
duration, while the initial approach has converged only to the early part of the
response.

Clearly using the concept of unshot energy the diffuse model is faster for the
desired duration of the reflectogram. On the other hand we must be careful about
the physical interpretation of the algorithm. The initial idea from eq. (4.18) was
totally consistent with the physical behavior of the elements as secondary sources. As
discussed in the beginning of this section, at every iteration the elements act as new
sources, emitting the energy that they have received during the previous iteration.
So, the process is very clear in terms of iterations – orders of reflections. With the
improved approach, the orders of reflections are mixed in the same iteration. This
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Figure 4.9: Convergence to the final solution applying the concept of “new” radiation
vectors. : After the first iteration. : After two iterations. : After four
iterations. : After six iterations.
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Figure 4.10: Convergence to the final solution applying the concept of unshot energy.
: After the first iteration. : After two iterations. : After four iterations.
: After six iterations.
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has no impact at the final result, since the energy conservation is not violated, but
we cannot apply the same concept for the purely diffuse radiation density, which
is directly linked to each iteration. The reason will be more clear in the discussion
about the specular model.

The purely diffuse radiation density, Bd[i, n], must be accumulated in a new
diffuse radiation vector, B′d[i, n] – and not the same – since the energy at the diffuse
model at each iteration needs to be separated from the energy at the other iterations.
The reduction assignment for every n reads:

B′d[i, n+ Tij ] := B′d[i, n+ Tij ] + ρiBd [j, n]Fi,j (4.21)

Summing up the new diffuse radiation densities from all elements on a wall, at every
time step, we get the time vector of the total radiation density of each wall.

Bdw[w, 1 : T ] =
1

Sw

Nw∑
i=1

SiB
′
d[i, 1 : T ] (4.22)

This will be used later, during the specular part, for controlling the creation of a
daughter image source.

4.2.4.2 Specular Model

In this part the contribution from the already determined first order image sources
is computed and the next order group is created for use in the next iteration step.

Every image source “sees” some of the elements on the boundary, i.e., it is
effective for them. As a result, the image source sends a specific amount of energy
at a particular time on each visible element, which is then recorded at its radiation
reflectogram. The same occurs for the receiver P . Once the contribution from
the image source has been computed and all the valid daughter sources have been
generated, the source is discarded. Hence, at every iteration only the sources of the
corresponding order are stored. This alleviates the computational load, in contrast to
the common methods, where all sources of all orders are stored and their contribution
to the receiver is calculated at the last stage.

During the first iteration, the main loop of the specular model runs over the first
order image sources. For each image source an effective polyhedron is created, defined
by the planes that pass through the point source and the edges of the wall where it
was reflected (Fig. 4.11, see also Sec. 3.3.1). It is now checked whether the receiver
is inside the effective polyhedron by running through all its surfaces and checking
if the inside criterion is fulfilled for all of them. If the receiver is outside from at
least one surface, then the checking process is terminated and no contribution from
the image source is added. In the opposite case, the energy reaching the receiver is
calculated according to eq. (4.3).

Eq[n+ TP,qk ] := Eq[n+ TP,qk ] +
1

4πc

rqk
R2
P,qk

(4.23)

In the main phase of the specular part, the ISM and AR fully cooperate with each
other. The algorithm works with each receiving wall individually. As seen in Figure
4.11, it is often likely that only part of a wall is visible by an image source (wall No 3
from the 2nd order image source). Thus, for each wall the visibility of each element
is checked via the already determined effective polyhedron. For simplicity, only the
center of the element is involved in the inside check. Thereupon, the integral over the
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Figure 4.11: Two effective polyhedra as they appear in a ground plan of a room. :
For the first order image source. : For the second order image source. The normal
vectors define the inside region.

solid angle subtended by the element at the image source, Hi,qk , is computed. The
sum of these integrals for all elements gives an approximation of the corresponding
integral for the visible part of the wall:

Hvis
w,qk

=

Nw∑
i=1

{
Hi,qk , if i visible
0, if i not visible

(4.24)

The same holds for the visible area of the wall:

Svisw =

Nw∑
i=1

{
Si, if i visible
0, if i not visible

(4.25)

Approximate Wall Visibility Criterion The visibility check for any wall, dis-
cussed in Sec. 3.3.1, can be facilitated by comparing Svisw with Sw. The fraction
Svisw /Sw varies from 0% to 100%, so that a preset value between 0% and 100% can
be specified in order for the condition of visibility of the wall to be valid. Appar-
ently, if it is set to 100%, this means that the daughter source can be produced if
and only if the whole wall is visible from the mother source. The criterion is very
strict in this case and many of the daughter sources are missed. In the opposite
case, when we demand that the fraction should be just larger than 0%, more sources
are likely to be produced than the actual, because even a very small visible part of
a wall leads to a daughter source that serves for the whole wall. If we had applied
dynamical subdivision for the wall, this source would lead to fewer daughter sources
after several reflections. It seems reasonable to assume that the fraction should be
larger than 20%-50%, in order for the daughter source to be produced.

Precise Wall Visibility Criterion A more precise treatment is possible if we
take advantage of the element positions, since the meshing of the wall already in-
corporates a sense of dynamical subdivision, described in Sec. 3.3.1. The indices
of all visible elements on the wall can be recorded to a line vector, linked to the
candidate daughter source. These elements can be called active elements for the
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daughter source, because they will define the new valid region for this source. If all
elements are visible from the mother source, the daughter source will be produced
for the whole wall and no further information about the elements is required. In the
other extreme case, when none of the elements is visible, the source is simply not
produced. But if at least one element is visible, then the line vector is attached to
the daughter source, for use in the next iteration. Then, when the daughter source
becomes a mother source, the line connecting any receiver with the source is checked
whether it intersects any of the active elements. If this happens, the checking pro-
cess is immediately terminated and the receiver is considered visible. The effective
polyhedron is not involved in this case. The accuracy of this visibility checking pro-
cess is increased as the number of the elements on the boundary is increased. This
happens because the valid region of the image source is built from the corresponding
active elements, which act as “pixels” on the whole wall. When these are smaller
the region is defined more precisely.

Obviously, the storing and scanning of the active elements raises the computa-
tional cost. Various combinations of the precise and the simple checking processes
can lead to an optimal result. For example, we can apply the precise approach for
the very first reflections, where the details are very important. Later on, the check-
ing can be based on the percentage of the visible area. Another idea is to check if
the number of visible elements is between an upper and a lower predefined limit.
If quite few elements are visible, the daughter source is discarded. If almost all
elements are visible, the daughter source is created being referred to the whole wall,
without further information.

The generation of image sources, according to the previous considerations, can be
validated using the well-known ISM for rectangular rooms, as described in Sec. 3.2.
Let us use the room described in Sec. 2.5, with uniform absorption coefficient, equal
to 0.4 and zero scattering coefficient. Apparently, when no diffuse reflections are
taken into account, only the specular part of our algorithm contributes to the re-
ceiver’s response. The algorithm behaves as a pure ISM in an arbitrary room and
the boundary subdivision does not play any role, except from its application at wall
visibility tests. Let us assume source coordinates Q = (3.0, 2.5, 2.0) m and receiver
coordinates P = (6.0, 1.25, 2.5) m. First, only the approximate wall visibility cri-
terion is applied, for three different preset percentages of the whole wall area. All
sources up to 10th order are used. In Figure 4.12 the resulting decay curves are
compared with the decay curve obtained by the algorithm of Sec. 3.2. Let us call
this theoretical one. For our general algorithm, allowing each daughter source to
be generated behind any wall that is visible by 45%, a decay curve is generated
that coincides well with the theoretical one. When the percentage decreases down
to 40% more sources are created, elevating the curve. In the opposite case, for 50%
visibility, we miss some sources and consequently some energy. After 0.08 s the
curves drop suddenly because of the fixed maximum order of reflection. The precise
wall visibility criterion is applied in Figure 4.13. The agreement with the theoretical
curve is very good up to 0.04 s. Even if the same orders were used as before, the
energy decay “converges” much slower than with the approximate criterion. This is
because with the approximate criterion more sources are generated which are placed
progressively far away from the original source, while with the precise one, more
“gaps” are filled in the pattern of the theoretically expected sources. The precise
criterion is much more computationally heavy than the approximate one. Its most
important advantage though is the elimination of the arbitrary parameter about the
wall visibility.
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Figure 4.12: Generation of image sources according to wall visibility, applying the approx-
imate criterion. Rectangular room. : Theoretical curve (algorithm from Sec. 3.2).

: appr. with 45% wall visibility. · · · · · ·: appr. with 40% wall visibility. · · : appr.
with 50% wall visibility.
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Figure 4.13: Generation of image sources according to wall visibility, applying the precise
criterion. : Theoretical curve (algorithm from Sec. 3.2). : Precise visibility
according to surface elements.
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Figure 4.14: A single specular reflection path from the original source. When the path is
terminated, the specular coefficient, (1 − s), becomes zero and from now on, the energy is
reflected totally diffusely.

Transition from Specular to Diffuse Reflections Once Hi,qk is known, the
radiation density of the visible elements, due to the source, can be calculated. How-
ever, the reflected energy heavily depends on whether the mother source is the
last source of an image source sequence or it will produce a daughter source. In
Figure 4.14, a sequence of reflections is presented, corresponding to a sequence of
image sources. Each time a new image source is produced behind a wall, a fraction
(1− s)(1−α) of the reflected energy is expected to be sent by the source, while the
rest s(1−α) is sent by the elements of the wall in a diffuse way. Evidently, when the
mother source of wall w does not produce a daughter source behind wall w + 1, all
the energy from the mother source will be reflected totally diffusely by wall w + 1.

Using the integral Hvis
w,qk

and the visible wall area, Svisw , the specular radiation
density of the wall, Bsw, is also calculated. As we did in Sec. 4.2.3, we assume that
the wall receives all of its energy within a unique time delay, Tw,qk , related to the
distance between its center and the image source.

Bsw = ρw
1

4πSvisw
rqkH

vis
w,qk

(4.26)

With this compromise, the specular radiation density of the wall is compared to the
corresponding diffuse radiation density at Tw,qk .

In its simplest form, the condition for producing a daughter source reads Bsw >
Bdw[w, Tw,qk ]. This means that as long as the energy contained in the specular model
is higher than that in the diffuse model, the specular model can still be active. In this
case, the radiation density of the visible elements on each wall, due to the mother
source, is accumulated to the total radiation density of the visible elements as:

B[i, Ti,qk ] := B[i, Ti,qk ] + siρi
1

4πSi
rqkHi,qk (4.27)

The simplest condition for terminating the image source chain readsBsw < Bdw[w, Tw,qk ]
and then eq. (4.27) becomes:

B[i, Ti,qk ] := B[i, Ti,qk ] + ρi
1

4πSi
rqkHi,qk (4.28)

The termination condition can be subjected to a predefined margin. We could
demand for example that it is enough for the specular energy to be higher than 50%
of the diffuse energy, in order for the image source sequence to be continued. The
lower the margin is, the later the image source sequence is terminated. Figure 4.15
demonstrates the relation between the specular and the diffuse radiation density of
the ceiling in the irregular room of Section 2.5. After the first 7 ms the contribution
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Figure 4.15: Demonstration of the transition from specular to diffuse model on a wall in
the irregular room. After 7 ms the specular radiation density starts to become lower than
the diffuse one, so that from now on the whole radiation density of the wall should start
being converted to diffusely reflected. : Diffuse radiation density. : Specular
radiation density.

from the image sources becomes smaller than the diffuse contribution from the wall.
The image sources are then gradually discarded.

In the cases where the scattering coefficient for most of the walls is very low, the
number of generated image sources would soon become too high, since the diffuse
radiation density would remain very low to satisfy the inequalities. So, more and
more image sources would be crated at every iteration. This would have a dramatic
effect on the algorithm’s performance. It seems reasonable to replace the diffuse
radiation density by the total radiation density of the wall, which will contain both
diffuse and specular reflections so far. This treatment can be allowed because of the
fact that the number of specular reflections increases with the square of time. Thus,
even if we had only specular reflections, we can assume that after some time they
can be represented by diffuse reflections. The important early part of the impulse
response is still not affected by this modification. As before, a predefined margin
can be used for the comparison.

Another way to terminate the image source production is by the reflection order,
following the classical ISM implementation (Sec. 3.3). In such a case, a maximum or-
der of specular reflections should be predefined. Since the iterations of the algorithm
are directly linked to the orders of specular reflections, we can simply demand that
after a number of iterations all the energy from the specular model is transfered to
the diffuse one according to eq. (4.28). This termination criterion can be effectively
combined with the energy criterion. In this way, we ensure that the conversion from
the specular-diffuse to purely diffuse model will take place after a certain number of
iterations, but in the meantime if some of the sources contribute rather weakly they
can be discarded by the energy criterion.

Apparently the rendering and the gathering processes have been merged to-
gether. The specular nature of the algorithm removes one of the advantages of the
pure AR method for a view-independent solution, since the directional information
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from the ISM has to be captured by the receiver. As a result, there is no sense
to calculate first the energy at the boundary (rendering), extracting afterwards the
energy at the receiver (gathering).

Once the first iteration step is finished, the diffuse and specular contributions
have been added to the elements and the receiver. As mentioned in Sec. 4.2.4.1,
there is no need for updating the primary radiation density by a new one, but this
should be done for the diffuse radiation density, Bd[i, n] := B′d[i, n]. Every new
iteration step can now be run using the same procedure, with the elements serving
as new sources together with the already generated image sources.

As the order of reflection is increased, there is an exponential growth of the num-
ber of reflections on each element, thus of the number of the arrival times. However,
the constant time discretization of the reflectograms serves for lumping together
reflections recorded within the same time interval, reducing the computational load
and storage. The pseudocode of the entire described algorithm is presented in Figure
4.16.

4.2.5 Full Algorithm – Iterations

Now let us include the coupling between AR and ISM, by letting the energy emit-
ted from the elements, suffer several specular reflections before distributed on the
boundary. According to Sec. 4.1.3, these specular reflections are represented by im-
age elements. Proceeding similarly to Sec. 4.2.4, both AR and ISM are used for the
first reflections, but in the late reflections all the energy is carried by AR and the
scattering coefficient shifts to 1. Figure 4.14 is now extended to include a typical
specular reflection path from a source element. In the resulting Figure 4.17, the dif-
fusely reflected energy from the first reflection is subsequently reflected specularly,
until all the reflections become diffuse.

4.2.5.1 Impulse Response due to Image Elements

The indirect contribution from the images of the source element j to the radiation
density of the receiving element i – second term in eq. (4.10) – is implemented as:

B[i, n+ Ti,jm] := B[i, n+ Ti,jm] + siρi

M∑
m=1

rjmFi,jmB [j, n] (4.29)

in this form the radiation density B [j, n] can be removed outside from the inner
summation:

B[i, n+ Ti,jm] := B[i, n+ Ti,jm] + siρiB [j, n]
M∑
m=1

rjmFi,jm (4.30)

This means that the way all the image elements of j contribute at element i –
the pattern of the radiation strengths and the corresponding delays – is always the
same. Thus, for the next iteration steps we do not need to generate from scratch
the sequence of image elements. It is enough to store the radiation reflectogram of
each element i when one of the other elements j is active, emitting a unit impulse
(B[j, 0] = 1):

Bm[i, j, Ti,jm] := Bm[i, j, Ti,jm] + siρi

M∑
m=1

rjmFi,jm (4.31)
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input : The radiation reflectograms and source table from the primary step

repeat
Diffuse Model

foreach source element j do
foreach receiving element i do

if wj = wi then skip calculations

B[i, Tij + 1 : T ] := B[i, Tij + 1 : T ] + ρiB [ j, 1 : T − Tij ]Fi,j
B′d[i, Tij + 1 : T ] := B′d[i, Tij + 1 : T ] + ρiBd [ j, 1 : T − Tij ]Fi,j

end
E[n+ TPj + 1 : T ] := E[n+ TPj + 1 : T ] + 1

πcB [ j, 1 : T − TPj ]HP,j

B [ j, 1 : T ] := 0 // Reset the unshot energy of j

end
Specular Model

foreach mother image source qk do
Compute effective polyhedron for qk
if P inside effective polyhedron then

E[TP,qk ] := E[TP,qk ] + 1
4πc

rqk
R2

P,qk

end
foreach receiving wall wi do

foreach element i of receiving wall do
if i inside effective polyhedron then

B′d[i, Ti,qk ] := B′d[i, Ti,qk ] + 1
4πSi

(1− si)ρirqkHi,qk

Hvis
w,qk

:= Hvis
w,qk

+Hi,qk // visible part of the wall

end
Bdw := Bdw + 1

Sw
SiB

′
d[i, Tw,qk ]

end
Bsw = 1

4πSvis
w
ρwrqkH

vis
w,qk

// Checking whether to produce the daughter source

if Svisw > 0.3Sw then // wall visibility check

if Bsw < Bdw then // energy check

B′[i, Ti,qk ] := B′[i, Ti,qk ] + ρi
1

4πSi
rqkHi,qk

else
B′[i, Ti,qk ] := B′[i, Ti,qk ] + siρi

1
4πSi

rqkHi,qk

Generate daughter source qk+1 at the mirror wall wi
Compute rqk+1

Store qk+1, rqk+1
and wi

end

end

end

end
Bd := B′d // Update diffuse radiation density

until convergence

Figure 4.16: Main version. The algorithm of the iteration steps.
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Figure 4.17: Flow of energy through specular reflections in the full algorithm. The upper
path represents a single image source sequence for the original source, while the lower path
represents a single image element sequence for one of the elements acting as a source. When
any of the paths is terminated, the specular coefficient, (1− s), becomes zero and from now
on, the energy is reflected totally diffusely.

For the construction of the image elements, a fixed reflection order can be used. All
the energy received by the image elements of the last order will be diffusely radiated,
so that eq. (4.31) for the last order becomes:

Bm[i, j, Ti,jm] := Bm[i, j, Ti,jm] + ρi

M∑
m=1

rjmFi,jm (4.32)

The resulting Bm[i, j, 1 : T ] vector is essentially the impulse response of the element
i with respect to source element j – Impulse Response due to the Image Elements
(IRIE). When it is convolved with the real B [ j, n], it gives the real radiation density
as a function of time:

B[i, n] = Bm[i, j, n] ∗B [ j, n] =
T∑
τ=n

Bm[i, j, τ ] ·B [ j, τ − n+ 1] (4.33)

Evidently, the computational cost is drastically reduced by storing the Bm[i, j, 1 :
T ] vectors, but we have to consider that eq. (4.32) leads to a three dimensional
matrix. For every element j as the source, every element i as the receiver and
for every time step. Three dimensional matrices are very impractical and difficult
to be stored. We need to transform it into a two dimensional one, but trying
to keep it small. The strategy is to take a very low sampling frequency only for
the Bm[i, j, 1 : T ] calculation. Thus, the reflectograms for the element to element
coupling will be a bit coarse but this seems not to harm our result. The important
thing is that many reflections can be grouped into one bin, once they arrive at the
same time interval. Then it seems useful to store only the bins and their arrival
times, not the whole time vectors Bm[i, j, 1 : T ], which contain usually a large
number of zeros. Hence two 2-dimensional matrices should be created, one for the
values of Bm[i, j, 1 : T ] and one for the corresponding arrival time steps. Their
columns represent the receivers i, while the lines are divided into groups of element
j and a number of arrival times. Table 4.1 shows the way of storing.
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Bm[1, 2, T 1,2
min] Bm[1, 3, T 1,3

min] · · · Bm[1, N, T 1N
min]

1 0
...

... · · ·
...

Bm[1, 2, T 1,2
max] Bm[1, 3, T 1,3

max] · · · Bm[1, N, T 1N
max]

Bm[2, 1, T 2,1
min] Bm[2, 3, T 2,3

min] · · · Bm[2, N, T 2N
min]

2
... 0

... · · ·
...

Bm[2, 1, T 2,1
max] Bm[2, 3, T 2,3

max] · · · Bm[2, N, T 2N
max]

Bm[3, 1, T 3,1
min] Bm[3, 2, T 3,2

min] · · · Bm[3, N, T 3,N
min]

3
...

... 0 · · ·
...

Bm[3, 1, T 3,1
max] Bm[3, 2, T 3,2

max] · · · Bm[3, N, T 3,N
max]

...
...

...
...

. . .
...

Bm[N, 1, TN,1
min] Bm[N, 2, TN,2

min] Bm[N, 3, TN,3
min] · · ·

N
...

...
... · · · 0

Bm[N, 1, TN,1
max] Bm[N, 2, TN,2

max] Bm[N, 3, TN,3
max] · · ·

Table 4.1: A way of storing the bins of the element impulse responses. The left most column
corresponds to the source elements j. The table contains the values of the bins, sorted with
respect to the arrival times T j,i

min . . . T
j,i
max. A similar table should be used for the values of

the arrival times.

4.2.6 Energy at the Receiver

As happens for the receiving elements, the way the image elements of j contribute
at the receiver P is always constant. We can thus compute the energy density
reflectograms for every element as a unit impulse source – with B [ j, 0] = 1 – and
store the result in a matrix with j lines and n columns:

Em[ j, TP,jm] := Em[ j, TP,jm] +
1

πc

M∑
m=1

rjmHP,jm (4.34)

Here the problem of the three-dimensional matrix is removed, since we are dealing
with one receiver. There is no need to distinguish between zeros and bins, unlike we
did in Sec. 4.2.5.1. If more receivers are involved in the simulation simultaneously,
care has to be taken for storing the data.

Once the matrix Em has been computed, we can calculate the contribution to
the real energy density, E[n], due to the image elements of j, by discrete convolution
with B [j, n]:

E[n] = Em[ j, n] ∗B [ j, n] =

T∑
τ=n

Em[ j, τ ] ·B [ j, τ − n+ 1] (4.35)

4.2.7 Reciprocity of Image Elements

A variation of the ISM, the Image Receiver Model, IRM, has been proposed for
efficiently simulating the case of a room with multiple sources and a single receiver
[44]. In this model instead of generating all the images for the original sources,
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Figure 4.18: Principle of the IRM.

only the images of the receiver are created (Fig. 4.18). The resulting configuration
is exactly the same as with the ISM (i.e., same distances, source factors etc.), but
the mirroring operations have been reduced dramatically.

Applying the IRM to the case of image elements, we can realize that a reciprocity
relation occurs between a source element j and a receiving element i, similar to the
reciprocity of the form factors. Figure 4.19 illustrates an example. The source
element j contributes directly at i and indirectly, via its images. Here only two of
the images are shown. It can be seen that when element i is the source and element
j is the receiver, the contributions from the images of i to element j are identical to
the contributions from element i to the images of j (blue and red lines are mutually
equal). Actually, since the elements are connected through the extended form factors
and they are not point sources, the form factor reciprocity relation should be applied
– eq. (2.12) – in order to compensate for the difference in the element areas:

Bm[j, i, 1 : T ] =
Si
Sj
Bm[i, j, 1 : T ] (4.36)

Obviously, applying the foregoing concept, not only the calculations can be halved,
but the storage as well. Now, for every source element j only the receiving elements
from j to N should be run through and not all of them from 1 to N . Now the storing
of the impulse responses can be facilitated by joining the bin values and their arrival
times in a unique matrix, as illustrated in Table 4.2.

The contribution to the receiver is not affected by these modifications, since it
still collects the energy from the image elements of j. However, if the elements are
made from more than three vertices, application of the IRM for the receiver would
be extremely beneficial, reducing the mirroring operations and storage (Fig. 4.20).
All the common validation tests can be applied as the image receiver was an image
source and as the center of the source element was the receiver.

Once the Bm[j, i, 1 : T ] and Em[ j, 1 : T ] vectors have been computed, their
convolutions with B should be imported in the main algorithm of Figure 4.16. For
that reason, equation (4.19) is modified as:

B[i, n+ Tij ] := B[i, n+ Tij ] + siρiB [j, n]Fi,j (4.37)
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Bm[1, 2, T 1,2
min] Bm[1, 3, T 1,3

min] · · · Bm[1, N, T 1,N
min]

1 0
...

... · · ·
...

Bm[1, 2, T 1,2
max] Bm[1, 3, T 1,3

max] · · · Bm[1, N, T 1,N
max]

T 2,1
min Bm[2, 3, T 2,3

min] · · · Bm[2, N, T 2,N
min]

2
... 0

... · · ·
...

T 2,1
max Bm[2, 3, T 2,3

max] · · · Bm[2, N, T 2,N
max]

T 3,1
min T 3,2

min

3
...

...
. . .

. . .
...

T 3,1
max T 3,2

max

Bm[N − 1, N, TN−1,N
min ]

...
...

...
. . .

. . .
...

Bm[N − 1, N, TN−1,N
max ]

TN,1
min TN,2

min · · · TN,N−1
min

N
...

... · · ·
... 0

TN,1
max TN,2

max · · · TN,N−1
max

Table 4.2: A compact way of storing the element impulse responses results by joining
together two triangular matrices. The lower triangular matrix contains the time steps of the
bins, in increasing order. The upper triangular matrix contains the respective values of the
bins for the reciprocal pairs.

Figure 4.19: Reciprocity relation between the images of a source and a receiving element.
Arrows and are mutually equal. The same happens with arrows and

.
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Figure 4.20: Using the images of the receiver, instead of the elements. The mirroring of the
point receiver replaces the need of mirroring the whole source element. This is advantageous
if polygonal elements are used. Arrows and are mutually equal. The same
happens with arrows and .

because now a portion of the energy that element i receives is further specularly
reflected – first term in eq. (4.10). To simplify the algorithm, the diffuse radiation
density, Bd, that is used for the controlling of the image source production, can
be still calculated as no further specular reflections occur for the diffuse portion
of energy. That is, eq. 4.21 may be used as it is without changing the reflection
coefficient.

Apparently, the reflection orders of the image elements work independently of
the orders - iterations of the main algorithm. This allows setting a relative low
number of reflections for the image elements, in order to keep the computational
cost as low as possible. The modification in the diffuse part of the main algorithm
is presented in Figure 4.21. Several examples and investigation of the benefits from
the full algorithm are presented in Section 5.7.
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Diffuse Model

foreach source element j do
foreach receiving element i do

if wj = wi then skip calculations

B[i, Ti,j + 1 : T ] := B[i, Ti,j + 1 : T ] + siρiB [ j, 1 : T − Ti,j ]Fi,j
B′d[i, Ti,j + 1 : T ] := B′d[i, Ti,j + 1 : T ] + ρiBd [ j, 1 : T − Ti,j ]Fi,j

end
E[n+ TP,j + 1 : T ] := E[n+ TP,j + 1 : T ] + 1

πcB [ j, 1 : T − TP,j ]HP,j

// Convolution with Bm to obtain contribution at element i
Read sequence of bins Bm[j, i, T j,i] and arrival times T i,j from Tab. 4.2
foreach Bm[j, i, T j,i] and T i,j do

B[i, T j,i + 1 : T ] := B[i, T j,i + 1 : T ] +B[j, 1 : T − T j,i] ·Bm[j, i, T j,i]

end
// Convolution with Em to obtain contribution at the receiver

foreach time step n do

E[n : T ] := E[n : T ] +B [ j, 1 : T − n+ 1] · Em[ j, n]

end

B [ j, 1 : T ] := 0 // Reset the unshot energy of j

end

Figure 4.21: Full version for the diffuse part of main algorithm (Fig. 4.16)

.
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Chapter 5

Investigation of the Combined
Model

In this chapter we attempt to make a theoretical validation for the algorithms that
implement the CARISM. The crucial aspect of the energy behavior in the room is
investigated for the main algorithm, in order to ensure that it works in a reasonable
way. Apart from that, the computational performance is discussed and the variation
of several room acoustic parameters is investigated as a function of the scattering
coefficient. Application of the main algorithm is performed for several cases of rooms.

Most important, the necessity of the coupling between the elements on the
boundary, i.e., the necessity of the full algorithm, is examined. We will keep the
reference used in the previous chapter for the two algorithms: The main algorithm
is the one that does not take into account further specular reflections of the dif-
fusely reflected energy by an element. The full algorithm includes these specular
reflections.

5.1 Energy Conservation

The energy behavior in the room is studied using the main algorithm. Figure 5.1
presents a simple example for the response at the receiver in the rectangular room
introduced in Sec. 2.5. As the scattering coefficient is increased uniformly from 0 to 1,
the nonlinear exponential decay, approaches the linear one, justifying the arguments
of Sec. 1.4 and Sec 3.2. Actually, only s = 0.3 is enough for this convergence. We will
discuss again the required degree of scattering for the exponential decay in Section
5.2.

Let us now refer back to Figure 4.4. Considering the room and a particular group
of absorption coefficients as a “black box”, we expect that the energy supplied by
the source is absorbed always in the same way, no matter what type of reflections
are applied. In other words, the scattering coefficient should not play any role for
the total absorbed energy in the room, at every time step. Of course, the way
each individual element absorbs the supplied energy will be different for different
scattering coefficients. Hence, the response at the receiver will be different too.

Pure AR and our CARISM are expected to give the same global energy decay, as
long as the absorption is not highly non-uniform and there is some scattering on the
room boundary. If we calculate the irradiation density, Birr[i, n], of the elements,
the energy density of the entire boundary, that has received at time step n, should

61



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Time (s)

E
n
er
gy

D
ec
ay

(d
B
)

0 5 10 15 20
Number of Mean Free Paths

Figure 5.1: Energy decay at the receiver for the rectangular room and different uniform
scattering coefficients. : s = 0. : s = 0.05. · · : s = 0.3. : s = 1.
Source-receiver position and absorption coefficient as in Sec. 2.5.

be:

Eb[n] =
N∑
i=1

SiBirr[i, n] (5.1)

The irradiation density can be easily calculated using equations (4.4), (4.19) and
(4.27), without the reflection and scattering coefficients. By backward Schroeder
integration (see App. A), we obtain the decay curve for the boundary energy density.
The different prediction models result to different energy distribution along the
elements of the boundary. Consequently, the corresponding reflectograms and the
decay curves are different for each element. However, the weighted average energy
for all the elements at every time step, SiBirr[i, n], is expected to give an objective
picture of the whole boundary energy decay, as Eb[n] does. It can be calculated by:

Eav[n] =
1∑N
i=1 Si

N∑
i=1

SiBirr[i, n] (5.2)

As for Eb[n], Eav[n] should be the same for different scattering coefficients, as long
as the absorption is the same. More precisely, Hanyu states that it is sufficient to
have the same average absorption coefficient in order for the total energy decay to
be the same [19]. This means that the actual distribution of the absorption could
be different for the different cases.

Three simulation cases in the irregular room are now examined. The sequence
of absorption coefficients is the same for all cases, giving an average absorption
coefficient ᾱ = 0.4. The sequence of scattering coefficients varies. In the first case
the scattering coefficient is everywhere 1, corresponding to a pure AR simulation. In
the other two cases a random sequence of scattering coefficients is applied and the
simulations are run with the CARISM. All coefficients are summarized in Table 5.1,
with the corresponding averaged ones. The source coordinates are Q = (0.3, 0.2, 0.2)
m and the receiver coordinates are P = (0.4, 0.7, 0.5) m. The boundary is subdivided
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Walls 1 2 3 4 5 6 7

Sw (m2) 0.54 0.41 0.49 0.65 0.34 0.54 0.65
α 0.8 0.3 0.7 0.1 0.0 0.2 0.6 ᾱ = 0.40

case 1 s 1.0 1.0 1.0 1.0 1.0 1.0 1.0 s̄ = 1.00
case 2 s 0.6 0.0 0.2 0.2 0.0 0.1 0.4 s̄ = 0.24
case 3 s 0.6 0.2 0.3 0.6 0.0 0.3 0.4 s̄ = 0.38

Table 5.1: Absorption and scattering coefficients for the three cases in Sec. 5.1. The area
of each wall is also given.
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Figure 5.2: Case 1. Decay curves for 55 uniformly chosen elements on the boundary,
obtained by AR. Coefficients from Tab. 5.1. : Curve for each element. : Decay
curve of averaged energy for all 276 elements.

into 276 elements and a sampling frequency of 16 kHz is used for a total impulse
response length of 25 ms. The sampling frequency is chosen relatively low in order
to help for better visibility of the reflectograms.

Figures 5.2, 5.3 and 5.4 present the energy decay for 55 uniformly chosen elements
on the boundary, for the three cases. Note that the figures focus on a slightly
shorter length than the actually predicted impulse response. The red line is the
average energy decay of all elements, obtained by eq. (5.2). The decay curves of
the averaged energy (red lines) coincide. However, the individual transition times
towards the exponential decay are longer when specular reflections are allowed by
the CARISM. It is clear that the energy is differently distributed and the individual
responses are different. For the receiver, the T30 reverberation time was calculated
402 ms for case 1, 404 ms for case 2 and 403 ms for case 3. The difference is small.
However the EDT varies more, being 456 ms for case 1, 424 ms for case 2 and 452
ms for case 3. This shows that even if the late part of the decay is almost the same in
the three approaches, the early one – the transition towards the exponential decay –
is different. The longest transition is observed in the second case, where the lowest
scattering is applied. In the third case the transition is shorter and the individual
decays approach more the smooth lines of Figure 5.2.
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Figure 5.3: Case 2. Decay curves for 55 uniformly chosen elements on the boundary,
obtained by the main algorithm of the CARISM. Coefficients from Tab.5.1. : Curve
for each element. : Decay curve of averaged energy for all 276 elements.
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Figure 5.4: Case 3. Decay curves for 55 uniformly chosen elements on the boundary,
obtained by the main algorithm of the CARISM. Coefficients from Tab.5.1. : Curve
for each element. : Decay curve of averaged energy for all 276 elements.
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Figure 5.5: Case 1. Reflectogram at the receiver position obtained by AR in the irregular
room. Coefficients from Tab. 5.1.

The reflectograms obtained by AR and the CARISM at the receiver, for the
three cases, are illustrated in Figures 5.5, 5.6 and 5.7. The lower the scattering, the
less smooth the reflectogram is. After 7 ms the response in the third case consists
only of diffuse reflections, as we can conclude from the highly smooth reflectogram.
Figure 4.15 was calculated with exactly the same parameters. We can now see the
connection between the reflectogram and the transition from the CARISM to pure
AR. After around 7 ms the specular reflections are much weaker than the diffuse
ones.

Tables 5.2 and 5.3 give an idea of the image sources behavior and of the conver-
gence towards the diffuse response. In both cases, 18 iterations are used in total.
For each iteration the effective sources for the receiver are recorded. In the second
case, the number of sources is reduced after the 8th iteration, because the diffuse
model is dominant. In the third case, the number of effective image sources has
started to be reduced earlier, after the first 5 iterations. Now, the specular model
is used only up to the 10th iteration. Then the model has completely converted to
AR and no further image sources are produced.

5.2 On the Degree of Scattering

In the foregoing examples the average scattering coefficient was chosen to be higher
than 0.2 (Tab. 5.1). The resulted total boundary energy was the same in all config-
urations since the absorption remained constant. The progress of the total energy
inside the room follows approximately the graph in Fig. 1.2. In such cases, as the
case considered in this graph, the late part of the energy decays exponentially, being
almost identical to that predicted by Eyring’s reverberation theory [1, 19, 20].

However, when the average scattering coefficient is too low, the specular model is
dominant throughout the response and the reverberant tail is expected to be longer.
In the following example, all simulation parameters are the same as in Sec. 5.1 but
the scattering coefficients are taken from Table 5.4. Now, the average scattering
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Figure 5.6: Case 2. Reflectogram at the receiver position obtained by the CARISM in the
irregular room. Coefficients from Tab. 5.1.
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Figure 5.7: Case 3. Reflectogram at the receiver position obtained by the CARISM in the
irregular room. Coefficients from Tab. 5.1.
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Iteration Eff. im. sources Iteration Eff. im. sources

1 7 10 289
2 25 11 224
3 58 12 165
4 124 13 101
5 217 14 50
6 306 15 24
7 385 16 7
8 391 17 1
9 373 18 -

Table 5.2: Case 2. Number of effective image sources for the receiver as a function of the
iteration steps in the algorithm.

Iteration Eff. im. sources Iteration Eff. im. sources

1 7 10 1
2 25 11 -
3 58 12 -
4 106 13 -
5 124 14 -
6 103 15 -
7 50 16 -
8 14 17 -
9 5 18 -

Table 5.3: Case 3. Number of effective image sources for the receiver as a function of the
iteration steps in the algorithm.

coefficient is s̄ = 0.10. In Figure 5.8 the total energy decay predicted by AR and
the CARISM is shown. The decay by AR is the same as before, but the decay by
the CARISM is elevated because only 10 % of the energy is diffusely reflected. The
individual decay curves for 55 elements are illustrated in Figure 5.9, together with
the average-energy decay curve (red line). Now, the transition time is even longer
compared to the second case of Sec. 5.1. The reflectogram at the receiver is shown
in Figure 5.10.

The present example, in correlation with the cases in Sec. 5.1 reveal that there
must be minimum value of the average scattering coefficient in the room, in order
for the total and average energy decay to remain constant, for constant absorption.
As Hanyu states [19], the degree of diffusion in a room does not only depend on the
scattering but on the absorption as well.

Now, we consider o as the number of energy reflections, equally spaced in time.
The probability that the energy in the room is not absorbed and it is specularly

Walls 1 2 3 4 5 6 7

Sw (m2) 0.54 0.41 0.49 0.65 0.34 0.54 0.65
α 0.8 0.3 0.7 0.1 0.0 0.2 0.6
s 0.3 0.0 0.2 0.0 0.3 0.0 0.0

Table 5.4: Absorption and scattering coefficients for the simulations of Sec. 5.2. The area
of each wall is also given. Average scattering coefficient: s̄ = 0.10.

67



0 2 4 6 8 10 12 14 16
−30

−25

−20

−15

−10

−5

0

Time (ms)

E
n
er
gy

D
ec
ay

(d
B
)

0 2 4 6 8 10
Number of Mean Free Paths

Figure 5.8: Decay curve of the total energy predicted by AR and the CARISM for the
coefficients from Tab. 5.4. : Result by AR. : Result by the CARISM.
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Figure 5.9: Decay curves for 55 uniformly chosen elements on the boundary, obtained by
the main algorithm of the CARISM. Coefficients from Tab. 5.4. : Curve for each
element. : Decay curve of averaged energy for all 276 elements.
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Figure 5.10: Reflectogram at the receiver position obtained by the CARISM in the irregular
room. Coefficients from Tab. 5.4.

reflected after o reflections is given by:

Pspec = [(1− s̄)(1− ᾱ)]o (5.3)

Now, we plot this simple formula, as a function of both the (average) scattering and
absorption coefficient, with the number of reflections as the parameter. The result
is illustrated in Figure 5.11. If we consider only the first reflection, it is obvious that
only very high values of scattering and absorption could reduce the probability of
specular reflections. Indeed, this happens with AR, where the scattering coefficient
is 1 and diffuse reflections are dominant already from the first reflection. But when
the number of reflections increases, the probability drops dramatically. Now, if we
assume that the first four reflections are enough to reveal the trend of the decay in
an irregular room, values of the average scattering and absorption coefficient higher
than 0.2, seem enough to reduce the probability of specular reflections so much, so
that the decay is expected to be very close to the one predicted by AR. This seems
to be in consistence with the decays in Fig. 5.2, 5.3, 5.4 and 5.9, where the three
first were derived with s̄ > 0.2 and the last one was derived with s̄ < 0.2.

On the other hand, as we will see in the next section, highly symmetrical rooms
cannot be included in this coarse generalization, because the statistical nature of
eq. (5.3) is lost.

5.3 Rectangular Room with High Absorption at the
Ceiling

Rectangular rooms with high absorption at the ceiling and very low absorption at the
walls and floor have been studied by Nilsson [45, 46]. Such cases are characterized
by Nilsson as “non-Sabine” spaces, since the diffuse reverberation theory fails to
give correct results.

We investigate one such case with our CARISM, by making the walls of the
rectangular room almost hard (α = 0.1), except from the ceiling which is assumed
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(a) o = 1. (b) o = 2.

(c) o = 3. (d) o = 4.

Figure 5.11: Probability that the total energy is specularly reflected after o reflections, as
a function of the average scattering and absorption coefficient.

totally absorptive (α = 1.0). Three simulations are run. For the first simulation all
walls are specularly reflecting. For the second simulation one lateral wall is totally
scattering and for the third simulation two lateral walls are totally scattering. Table
5.5 summarizes the cases. The source is placed at Q = (3.0, 2.5, 2.0) m and the
receiver is placed at P = (6.0, 1.5, 2.0) m. The room is subdivided into 252 elements
and a sampling frequency of 2 kHz is used for a 0.4 s impulse response length.

The early part of the reflectograms at P are illustrated in Figures 5.12 to 5.14, for
the three cases. The corresponding decay curves are presented in Figure 5.15. The
decay curve by AR is also plotted. The results are in consistence with the discussion
in Sec. 5.2. As expected, the totally specular case leads to a non-exponential decay.
The case with scattering at one lateral wall leads to a decay curve which has a
“knee” point around 0.03 s, where the slope changes from a high to a lower value.
Now the average scattering coefficient is around 0.1, still below the limit suggested
in Sec. 5.2. The third case gives almost the same result with AR. Now the average
scattering coefficient is 0.25, which seems enough for a linear decay in logarithmic
scale. But the important point in the third case is that there is not any couple of
parallel walls that could maintain a series of repeatable specular reflections. More
specific, the ceiling is totally absorbing, so no image source is produced behind it.
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Walls 1 2 3 4 5 6

Sw (m2) 40.0 40.0 15.0 15.0 24.0 24.0
α 0.0 1.0 0.0 0.0 0.0 0.0 ᾱ = 0.25

case 1 s 0.0 0.0 0.0 0.0 0.0 0.0 s̄ = 0.00
case 2 s 0.0 0.0 1.0 0.0 0.0 0.0 s̄ = 0.09
case 3 s 0.0 0.0 1.0 0.0 1.0 0.0 s̄ = 0.25

Table 5.5: Absorption and scattering coefficients for the simulations in Sec. 5.3. The area
of each wall is also given.
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Figure 5.12: Case 1. Reflectogram at the receiver position obtained by the CARISM in
the rectangular room with coefficients from Tab. 5.5.

Consequently, even if the floor is almost totally reflective, the sequence of image
sources for this pair is terminated after the first order. The same happens for the
pair of the lateral walls with one being totally scattering.

The decay curves from 50 elements on the boundary, for cases 2 and 3, are given
in Figures 5.16 and 5.17. The red line is the decay curve of the average energy
– eq. 5.2 –. In the second case, the decay curves corresponding to elements on walls
No 5 and No 6 are elevated and non-linear, because this walls are totally specular
with low absorption. The rest of the curves, corresponding to the other walls, decay
exponentially in a diffuse-like manner. In the third case, the curves decay more or
less as in a typical AR prediction. The corresponding T30 and EDT values for the
three cases are presented in Table 5.6. Their variation is in agreement with the
curves in Fig. 5.15.

T30 (s) EDT (s)

case 1 0.77 0.59
case 2 0.60 0.40
case 3 0.29 0.32

Table 5.6: T30 and EDT values for the three cases in Sec. 5.3.
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Figure 5.13: Case 2. Reflectogram at the receiver position obtained by the CARISM in
the rectangular room with coefficients from Tab. 5.5.
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Figure 5.14: Case 3. Reflectogram at the receiver position obtained by the CARISM in
the rectangular room with coefficients from Tab. 5.5.
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Figure 5.15: Decay curves for all cases at the receiver position obtained by the CARISM in
the rectangular room with coefficients from Tab. 5.5. · · : Case 1. : Case 2. :
Case 3. · · : Calculation with AR.
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Figure 5.16: Case 2. Decay curves for 50 uniformly chosen elements on the boundary,
obtained by the CARISM, in the rectangular room with coefficients from Tab. 5.5. :
Curve for each element. : Curve for averaged energy over all 252 elements.
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Figure 5.17: Case 3. Decay curves for 50 uniformly chosen elements on the boundary,
obtained by the CARISM, in the rectangular room with coefficients from Tab. 5.5. :
Curve for each element. : Curve for averaged energy over all 252 elements.

Walls 1 2 3 4 5 6

Sw (m2) 40.0 40.0 15.0 15.0 24.0 24.0
α 0.8 0.8 0.8 0.8 0.2 0.2
s 1.0 1.0 1.0 1.0 0.0 0.0

Table 5.7: Absorption and scattering coefficients for investigation of flutter echo in the
rectangular room. The area of each wall is also given.

5.4 Prediction of Flutter Echo

One interesting application of the main algorithm is the prediction of the so common
flutter echo phenomenon, which cannot be simulated properly by ray tracing or AR.
Consider a rectangular room consisting of highly scattering walls, except from two
parallel lateral ones, which are highly specular. After some time from the direct
contribution, only the sequence of image sources corresponding to these two walls
will be maintained, since all other sequences will have transfered all of their energy
to the diffuse model. This unique sequence of image sources, corresponding to the
parallel specular reflecting walls, effectively represents the flutter echo.

The phenomenon is investigated with the rectangular room and the coefficients
from Table 5.7. All walls are chosen to be totally diffuse, except from two parallel
ones, which are totally specular. The absorption is quite low for the specular walls,
while it is high for the rest. The boundary is subdivided into 252 elements. A
sampling frequency of 2.7 kHz is used for an impulse response length of 0.15 s. The
source is placed at the centre of the room, Q = (4, 2.5, 1.5) m and the receiver is
placed between the source and one of the specular reflecting walls, P = (4, 1.25, 1.5)
m. The simulation was run with 7 iterations. For each iteration, only two image
sources are produced, corresponding to the pair of the specular parallel walls.

The reflectogram at the receiver is illustrated in Figure 5.18. It can be seen
that equally spaced bins occur in the response with much higher amplitudes than
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Figure 5.18: Demonstration of flutter echo. Reflectogram at the receiver position obtained
by the CARISM in the rectangular room with coefficients from Tab. 5.7.

the rest stems. Starting from the first bin, just after the direct contribution, we
can count 14 bins in total. A pair of bins corresponds to the contribution from
the image sources during one iteration. Hence, 7 pairs of bins corresponds to the
number of iterations used in the simulation. The advantage of the CARISM in the
case of highly symmetrical problems, like flutter echo, is that the computational load
is mitigated by the fact that only the important image source sequences are kept,
while the rest of the problem is handled by the much faster AR part.

The decay curve at the receiver is shown in Figure 5.19. In the same Figure,
the curve by AR is presented. Unlike the cases in Sec. 5.3, the average scattering
coefficient is very high now (s̄ = 0.7), but the curve does not follow the exponential
law. Evidently, the repeatable reflections between the parallel specular walls – that
result to the flutter echo – prevent the energy to be dissipated in a diffuse way and
raises the reverberation time (T30 = 0.24 s, instead of T30 = 0.15 s given by AR).
The reverberation time by Sabine’s formula is 0.20 s, while by Eyring’s is 0.13 s.

The decay of the total boundary energy, as given by eq. (5.1) is illustrated in
Figure 5.20. Both the results by the CARISM and by AR are presented. Similarly
to Fig. 5.19, AR underestimates the energy at the late part, by assuming perfectly
diffuse reflections.

Finally, in Figure 5.21 the decay curves from 50 elements on the boundary are
given. The red line is the decay curve of the average energy, which is the same as
the dashed line in Fig. 5.20. Evidently, the individual curves of the elements lying
on the parallel specular walls have different shape and they are elevated above the
average. The behavior of the energy at these elements is the reason for decreasing
the slope at the late part of the total boundary energy in Fig. 5.20.

5.5 Performance of the CARISM

Clearly AR is faster than ISM when less elements are used for the same number of
walls and ISM is faster than AR when less walls are used for the same number of
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Figure 5.19: Demonstration of flutter echo. Decay curve at the receiver position in the
rectangular room with coefficients from Tab. 5.7. : Result by the CARISM. :
Result by AR.
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Figure 5.20: Demonstration of flutter echo. Decay curve of the total boundary energy in
the rectangular room with coefficients from Tab. 5.7. : Result by the CARISM. :
Result by AR.
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Figure 5.21: Demonstration of flutter echo. Decay curves for 50 uniformly chosen elements
on the boundary, obtained by the CARISM, in the rectangular room with coefficients from
Tab. 5.7. : Curve for each element. : Curve for averaged energy over all 252
elements.

elements. For our combined algorithm, the execution time depends highly on which
of the two models is dominant.

In the following example, the room and its meshing are fixed with 7 walls and
276 elements, respectively. The irregular room is used with absorption according
to Tab. 5.1. The CARISM is run with uniform scattering, varying from 0 to 1. 18
iterations are used with a sampling frequency of 20 kHz. The duration of the im-
pulse response is 35 ms. Only the energy termination criterion is used for the image
sources, as was described in Sec. 4.2.4.2. The execution cpu time is recorded for
every iteration and the result is illustrated in Figure 5.22. The number of effective
image sources per iteration is shown in Figure 5.23. Obviously, the execution time
is proportional to the number of generated image sources. For pure specular reflec-
tions the execution time and the number of image sources increase monotonically.
Applying s = 0.1 to all walls is enough to introduce a “peak” in the image source
production, after which their number is gradually reduced, resulting to a bell-shaped
curve for the computational time. For s = 0.2 the execution time has been dramati-
cally reduced and for s > 0.4 it is almost the same as with s = 1, (lower black curve
in Fig. 5.22). These facts are correlated well with the discussion in Sec. 5.2. The non-
linear decrease of the total execution time, for increasing scattering, is illustrated in
Figure 5.24.

5.6 Room Acoustic Parameters

According to Sec. 5.1, the total energy decay in a room remains the same for different
scattering coefficients, in irregular rooms, as long as the absorption is constant and
randomly distributed. As a result, the reverberation time remains the same as well.
If it is evaluated by the slope of the late part of the decay curve, then it is the
same not only for the whole energy in the room but also for energies at individual
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Figure 5.22: Cpu time per iteration for different uniform scattering coefficients.
n : s = 0. l : s = 0.1. · u · : s = 0.15. n : s = 0.2. · l · : s = 0.3.
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Figure 5.23: Number of effective image sources per iteration for different scattering coef-
ficients. n : s = 0. l : s = 0.1. · u · : s = 0.15. n : s = 0.2. · l · :
s = 0.3. u : s = 0.4.
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Figure 5.24: Total cpu time as a function of the scattering coefficient, corresponding to
figure 5.22.

receivers, since the slope of the late part is constant everywhere in the room. On the
other hand, evaluating the reverberation time by the early part of the curve –T25,
T30 or EDT – different values will be obtained, for varying scattering coefficients,
because of the different transitions towards the exponential decay.

The influence of scattering is also prominent on other room acoustic parameters,
which are based on the energy ratio between the early and the late part of the curve.
Such parameters are clarity C80, definition D50, and center time TS (see App.A).
We investigate the change in these three parameters and EDT , as a function of the
scattering coefficient for two room cases: 1) Irregular room with uniform absorption.
2) Irregular room with highly non-uniform absorption. In both cases the scattering
coefficient varies uniformly from 0 to 1, by a step of 0.1.

5.6.1 Irregular room with uniform absorption

For this case the absorption coefficient is everywhere 0.4. The sampling frequency is
20 kHz for an impulse response duration of 50 ms. 22 iterations are used. Figure 5.25
illustrates the change in the predicted EDT , C80, D50 and TS as a function of the
scattering coefficient. One source and three receiver positions are used, according
to Table 5.8. The room is subdivided into 276 elements. Notice that since the room
is really small (V = 0.452 m3), the reverberation time for ᾱ = 0.4 is very low (by
Sabine formula we get 53 ms). It would be meaningless to apply the clarity and
definition indexes for the usual early time limit of 80 ms and 50 ms, respectively.
Otherwise, we would obtain infinite value for C80 and >>100% for D50. According
to Sec. 2.5, the room has been made for 1/10 scale measurements. However, in this
study we use it as a very small full scale room, since we investigate its behaviour
and not the real values. For this reason the early time limits of C80 and D50 can
be scaled by 1/10, in order to obtain the same information as if we had applied the
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x (m) y (m) z (m)

Q 0.3 0.2 0.2
P1 0.4 0.7 0.5
P2 0.6 0.4 0.3
P3 0.1 0.3 0.2

Table 5.8: Source-receiver positions for the investigation of room acoustic parameters in
the irregular room.

scaling to the room itself.
As expected from the study so far, the level of scattering on the room surfaces

affects the early part of the response, changing the value of the room acoustic pa-
rameters. Among the four parameters, the EDT shows the largest variation as a
function of scattering. This variation can be seen by comparing Fig. 5.2, 5.3 and 5.4.
The elements are considered as different receivers. For low degree of scattering in
the room, the energy decays slowly between 0 and -10 dB. This results to a longer
EDT . As the degree of scattering is increased, the values for P2 and P3 decrease
with a progressively shallower slope. As for the first receiver, the EDT exhibits
a dip around s = 0.3, increasing afterwards. It seems that the position of P1 is
responsible for such a non-monotonous behavior, because of different distribution of
some late-early reflections.

Similar behavior is observed for the other parameters. Clarity and definition
increase monotonically with increased scattering for both P2 and P3. This increase
can be explained both by the change in the slope of the decay curve and by concen-
tration of energy in the early part of the response. For very low scattering values, the
specular reflections are dominant and the minor portion of energy that is diffusely
reflected is not enough to cause an exponentially decay in the response. Thus, the
energy decays much slower, for low scattering values, leading to a higher denomi-
nator in the expressions of C80, D50 (see App.A). However, in consistency to the
discussion in Sections 5.1 and 5.2, when the average scattering coefficient is more
than around 0.2, the energy decay is close to the one predicted by AR and the
change in the parameters is less abrupt. Of course, even if the global energy decay
is approximately constant for different scattering coefficients larger than 0.2, the
individual responses are different. For this reason, C80 and D50 continue to increase
slightly up to s = 0.6 for P2 and P3. After this value the parameters remain practi-
cally unchanged. The same occurs for TS, in the reverse direction. However, s = 0.3
is enough to fix TS to the final value. Similar to the case of EDT , the parameters
do not behave monotonous for P1. Again, its position should be the reason for that.
As the scattering coefficient increases, the slope of the energy decay decreases and
the concentration of energy becomes higher at the early part (before 8 ms for C80

and 5 ms for D50). This results to an increase of the parameters. But while the
scattering coefficient increases further, more energy is concentrated at the late part
(after 8 ms for C80 and 5 ms for D50). This energy must have been radiated by
distant elements or distant image sources. Similar arguments hold for TS at P1.

5.6.2 Irregular room with non-uniform absorption

Now the absorption in the irregular room is non-uniform, given in Table 5.9. All
other simulation parameters are the same with Sec. 5.6.1. The predicted values of
EDT , C80, D50 and TS are presented in Figure 5.26. In general, the shape of the
curves is similar to those in Sec. 5.6.1. Again EDT shows the largest variation. As
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Figure 5.25: Room acoustic parameters at three receiver positions as a function of the
scattering coefficient in the irregular room. Uniform absorption coefficient 0.4. n : P1.

l : P2. · u · : P3. For clarity and definition a scaling of 1/10 was used for the early
time limit, resulting to 8 ms and 5 ms respectively.

before, the curves for the first receiver are not monotonous and its position should
be a reason for that.

5.7 Investigation of the Full Algorithm

So far, theoretical predictions were performed with the main algorithm of figure
4.16. In the next examples, the modifications corresponding to the full algorithm
(Sec. 4.2.5) are included. Initially, simulations are run for 2, 3, 4 and 5 orders
of image elements. The irregular room is used with the simulation parameters of
Sec. 5.1 and coefficients for the second case of Tab. 5.1. Following the discussion in
Sec. 4.2.5.1, a very low sampling frequency of 2 kHz is used for the Bm[i, j, 1 : T ]
calculation. The concepts of Sec. 4.2.7 are applied to halve the computational cost.
The execution time for the calculation of Bm[i, j, 1 : T ] and Em[j, 1 : T ] for 2 orders
is 1 min. For 3 orders it is 2 min, for 4 orders 6.5 min, while for 5 orders it is 9 min.
The time required for the full algorithm to run was about 15 min. This is quite
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Walls 1 2 3 4 5 6 7

Sw (m2) 0.54 0.41 0.49 0.65 0.34 0.54 0.65
α 0.1 0.7 0.1 0.0 0.3 0.6 0.4

Table 5.9: Absorption coefficients for the investigation of room acoustic parameters in the
irregular room. The area of each wall is also given.

large, compared with the execution time of the main algorithm (Sec. 5.5).

As an example, the decay curves obtained with 2 and 4 orders for the image
elements are illustrated in Figures 5.27 and 5.28. The average energy decay (red
line) is the same with Fig. 5.3, but even if the coefficients are the same, the individual
energy decays are slightly different, because now the energy is differently distributed
by the image elements. However the differences seem to be really small. Even
between the different orders of image elements that were used (Fig. 5.27 and 5.28),
is hard to identify the deviations by visual inspection. This is the case also when
comparing the corresponding reflectograms at the receiver (Fig. 5.29 and 5.30).

Now, we will try to quantify these small deviations by comparing the decay
curves obtained with the main algorithm (Fig. 5.3) with the results from the full
algorithm with different orders of image elements. For that purpose, the mean
absolute percentage error (MAPE) and its standard deviation are calculated for
the decay curves of all elements N , at every time step. That is, if the decay curve
of each element is EDTi (see App. A), the mean absolute percentage error between
the main and the full algorithm is obtained by:

MAPE(%) =
1

N

N∑
i=1

∣∣∣∣(EDTi)main − (EDTi)full
(EDTi)full

∣∣∣∣ · 100 (5.4)

Figures 5.31 to 5.34 show the results for the different orders. The MAPEs of
Fig. 5.31 to 5.34 are summarized in Figure 5.35. Another picture of the deviation
between the algorithms is obtained by calculating the mean square percentage error :

MSPE(%) =
1

N

N∑
i=1

[
(EDTi)main − (EDTi)full

(EDTi)full

]2
· 100 (5.5)

The summarized result for all the used orders is illustrated in Figure 5.36. In both
cases, the behavior is similar. There is a peak at the early part of the response
around 5.5 ms and then the error becomes progressively smaller at the late part.
Moreover, all curves coincide at this peak, revealing that the error in the very early
part of the response depends on at least 2 orders of image elements. It is interesting
to see that after the peak, the simulation with 2 orders produces more error than
the simulation with more orders. It seems that when quite few orders of image
elements are used, the specular nature of the full algorithm is more prominent and
the deviation with the main algorithm is higher, because the latter uses only the
diffuse interaction between the real elements. Increasing the orders of image elements
the error curve converges to a final lower value. This is quite important, because
the full algorithm tends to behave in a diffuse way when a large number of image
elements are used, which are distributed unevenly around the room. Of course, the
shape of the irregular room encourages such an “uneven” behavior, that leads to
high diffusion. It is likely that results from regularly shaped rooms could lead to
different conclusions.
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Figure 5.26: Room acoustic parameters at three receiver positions as a function of the
scattering coefficient in the irregular room. Absorption coefficients are taken from Tab. 5.9.

n : P1. l : P2. · u · : P3. For clarity and definition a scaling of 1/10 was used
for the early time limit, resulting to 8 ms and 5 ms respectively.

The simulations are run once more for a longer impulse response length of 50 ms,
with a lower sampling frequency of 1 kHz for the image elements. Now the orders
are increased by one. Both the MAPE and the MSPE are computed for 3, 4, 5
and 6 orders of image elements. The results are illustrated in Figures 5.37 and 5.38.
Again, the behavior is similar among the curves of different orders. In addition, the
error is stabilized for the higher orders at the very late part of the response.

In any case, the error between the results of the main algorithm and the full
one is very small. At this point we have some facts that justify the approach by
Lewers [36], who did not account for further specular reflections in the AR part. The
perfectly diffuse nature of AR seems powerful enough to blur any specular reflection
of the diffusely reflected energy. Thus, it seems that there is no need to include the
coupling discussed in Sec. 4.1.3, because whatever the course of the energy, it will
remain more or less diffuse.

On the other hand, the ray tracing based algorithm by Dalenbäck [6], could
not represent the diffuse reflections sufficiently if no secondary sources and further

83



0 2 4 6 8 10 12 14 16
−30

−25

−20

−15

−10

−5

0

Time (ms)

E
n
er
g
y
D
ec
ay

(d
B
)

0 2 4 6 8 10
Number of Mean Free Paths

Figure 5.27: Decay curves for 55 uniformly chosen elements on the boundary, obtained by
the full CARISM algorithm in the irregular room. Coefficients from Tab. 5.1, for case 2.

: Curves for each element. : Curve for averaged energy over all 276 elements.
Two orders of reflections were used for the image elements.
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Figure 5.28: Decay curves for 55 uniformly chosen elements on the boundary, obtained by
the full CARISM algorithm in the irregular room. Coefficients from Tab. 5.1, for case 2.

: Curves for each element. : Curve for averaged energy over all 252 elements.
Four orders of reflections were used for the image elements.

84



0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

Time (ms)

E
(d
B

re
1
0−

1
2
W

s/
m

3
)

Figure 5.29: Reflectogram at the receiver position obtained by the full CARISM algorithm
in the irregular room. Coefficients from Tab. 5.1, for case 2. Two orders of reflections were
used for the image elements.
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Figure 5.30: Reflectogram at the receiver position obtained by the full CARISM algorithm
in the irregular room. Coefficients from Tab. 5.1, for case 2. Four orders of reflections were
used for the image elements.
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Figure 5.31: Mean absolute percentage error between the decay curves predicted by the
main and the full CARISM algorithm in the irregular room. : Mean value from all
N decay curves. : ± standard deviation. Coefficients from Tab. 5.1, for case 2. Two
orders of reflections were used for the image elements.
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Figure 5.32: Mean absolute percentage error between the decay curves predicted by the
main and the full CARISM algorithm in the irregular room. : Mean value from all N
decay curves. : ± standard deviation. Coefficients from Tab. 5.1, for case 2. Three
orders of reflections were used for the image elements.
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Figure 5.33: Mean absolute percentage error between the decay curves predicted by the
main and the full CARISM algorithm in the irregular room. : Mean value from all
N decay curves. : ± standard deviation. Coefficients from Tab. 5.1, for case 2. Four
orders of reflections were used for the image elements.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

Time (ms)

E
rr
or

(%
)

0 2 4 6 8 10
Number of Mean Free Paths

Figure 5.34: Mean absolute percentage error between the decay curves predicted by the
main and the full CARISM algorithm in the irregular room. : Mean value from all N
decay curves. : Standard deviation. Coefficients from Tab. 5.1, for case 2. Five orders
of reflections were used for the image elements.
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Figure 5.35: Mean absolute percentage error between the decay curves predicted by the
main and the full CARISM algorithm in the irregular room. Coefficients from Tab. 5.1, for
case 2. : 2 orders of image elements. : 3 orders of image elements. · · : 4
orders of image elements. : 5 orders of image elements.
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Figure 5.36: Mean square percentage error between the decay curves predicted by the main
and the full CARISM algorithm in the irregular room. Coefficients from Tab. 5.1, for case
2. : 2 orders of image elements. : 3 orders of image elements. · · : 4 orders
of image elements. : 5 orders of image elements.
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Figure 5.37: Mean absolute percentage error between the decay curves predicted by the
main and the full CARISM algorithm in the irregular room. Coefficients from Tab. 5.1, for
case 2. Now the length of the impulse response is 50 ms. : 3 orders of image elements.

: 4 orders of image elements. · · : 5 orders of image elements. : 6 orders of
image elements.
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Figure 5.38: Mean square percentage error between the decay curves predicted by the main
and the full CARISM algorithm in the irregular room. Coefficients from Tab. 5.1, for case 2.
Now the length of the impulse response is 50 ms. : 3 orders of image elements. :
4 orders of image elements. · · : 5 orders of image elements. : 6 orders of image
elements.
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specular reflections were taken into account, as discussed in Sec. 4.1.3. This is the
reason why his approach seems quite reasonable for the model he uses, which is
fundamentally different to AR.

These claims seem very important, since the computational effort for the full
algorithm is really high: 3 to 4 times higher than that of the main algorithm, plus
the time for the calculation of image elements. In consistency with this discussion,
the validations in Chapter 6 are performed only with the main algorithm.
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Chapter 6

Experimental Validation

The theoretical predictions by the algorithm described in Section 4.2 are validated
with experimental data. In the first stage a reverberation room for scale measure-
ments is used as a very small full-scale one. In the second stage, the PTB Round
Robin III geometry is used1 [21, 22], for which there is available public measurement
data, in addition to results by commercial room acoustic software.

6.1 Time Resolution

Clearly the discretization of time discussed in Sec.4.2.2 affects the quality of simula-
tions. In Sec. 2.5 an example has been given for pure AR. Similar influence of time
resolution is expected for the CARISM. As Nosal states for AR [47], the sampling
frequency of the impulse response has nothing to do with the frequency of the sig-
nal, since phase information is not included. It is only used to define in which time
interval the energy contributions are summed up. However we still need a rule to
find the appropriate sampling frequency for our algorithm implementation, such as
the Nyquist theorem, that holds for phase-supporting signals.

Following Nosal [47], the Courant number criterion is applied for all validations.
The Courant number is expressed as c dt/∆xmin, where ∆xmin is the minimum
distance between the elements. The criterion states that this number should be
less than one, so that the distance traveled at every time step is not more than the
(minimum) distance between the elements.

6.2 Irregular Room Measurements

The room introduced in Section 2.5 is used for the experimental validation of the
proposed algorithm. A circular scattering surface of diameter 35.4 cm is placed in
the bottom of the room. Since the surface does not occupy the whole bottom area
but only a part of it, a new wall has to be considered in the virtual model of the
room, as illustrated in Figure 6.1. Table 6.1 presents the areas of the 8 walls. The
first wall represents the bottom and the second one represents the scattering surface.
The original walls of the room are made of acrylic glass and can be assumed to be
specularly reflective.

Three types of scattering surfaces are used: a sinusoid, a wave and a hexagonal
one (Fig. 6.2). The surfaces are made for 1/10 scale measurements. In this study
they are treated as full scale ones, since the room itself is treated as a full scale too.

1http://www.ptb.de/en/org/1/16/163/roundrobin/roundrob3 1.htm
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Figure 6.1: The meshed irregular room with the scattering surface ( ) placed on the
bottom.

(a) Sinusoid. (b) Wave. (c) Hexagonal.

Figure 6.2: The three scattering surfaces used in the irregular room.

Their average thickness is about 10 mm. Placing them directly at the acrylic bottom
of the room would lead to diffraction by-products around their free edge. For that
reason, the bottom of the room was treated by adding a paper-faced foam board
of 10 mm thickness. A disc with the same diameter as the scattering surfaces was
removed, so that the surfaces could be placed in face with the rest of the bottom
board. Two of the walls were covered with a porous absorber of 2.2 cm approximate
thickness.

A spark source was used for producing impulses and a free field 1/2-inch B&K
microphone was used as the receiver. The microphone recorded the pressure impulse
response, that is, a response including phase information, in contrast to the results

Walls 1 2 3 4 5 6 7 8

Sw (m2) 0.42 0.09 0.40 0.49 0.57 0.34 0.52 0.56

Table 6.1: Wall areas for the simulated irregular room of fig. 6.1.

92



x (m) y (m) z (m)

Q1 0.180 0.148 0.075
Q2 0.205 0.180 0.213
Q3 0.475 0.200 0.213
P1 0.295 0.585 0.310
P2 0.320 0.550 0.315

Table 6.2: Source-receiver positions at the irregular room.

produced by the CARISM. All impulse response measurements were performed with
the aid of DIRAC software, developed by Acoustics Engineering company2. For
every position, five impulse responses were averaged in order to improve the signal
to noise ratio. The various positions of the source and the receiver are presented in
Table 6.2. Three combinations where treated: Q1-P1, Q2-P2 and Q3-P2. For the
position Q1 the source was placed through a hole on the foam board, in order to
eliminate unwanted reflections. A picture of the setup is presented in Figure 6.3.
The room has a Schroeder’s frequency limit of 3070 Hz. The measurements are
taken at three octave bands above this limit: 4 kHz, 8 kHz and 16 kHz. A sampling
frequency of 96 kHz was used.

Obviously, the empty room is not perfectly reverberant, with its walls being not
fully reflective. Thus, the empty room has an equivalent absorption area differ-
ent from zero and it is crucial that we know the corresponding average absorption
coefficient which should be attached afterwards to the original walls during the sim-
ulation, even if it is rather small. The equivalent absorption area of the empty room
was estimated by measuring the reverberation time and using Sabine’s formula,
A = 0.16V/T , with V = 0.452 m3. Afterwards, the averaged absorption coefficient
for the walls was derived by division with the total inside surface, St = 3.64 m2.

The random incidence statistical absorption coefficients of the paper-faced foam
board and the porous absorber were measured by the reverberation chamber method
in the empty irregular room. The reverberation time of the empty room, Tem, was
measured first. Afterwards, the reverberation time with a specimen of the material
inside, Tsp, was measured. If Ssp is the area of a specimen and V the volume of the
room, the absorption coefficient can be calculated by Sabine’s formula [2]:

α =
0.161V

Ssp

(
1

Tsp
− 1

Tem

)
(6.1)

Absorption and scattering data for the wave and hexagonal scattering surfaces were
taken directly from the work by Olesen [48], who used the same surfaces. As for the
sinusoidal surface, the absorption coefficient was measured with the reverberation
chamber method, while the scattering coefficient was taken from the theoretical
study by Embrechts et al. [41]. The absorption data for all materials used at the
frequencies of consideration, are presented in Table 6.3. The scattering coefficients
for the three surfaces are given in Table 6.4. Apparently, the volume of the room
after installing the new bottom and the porous absorbers was decreased, becoming
V = 0.423 m3. Apart from the scattering surface, it would be quite unreasonable
to assume perfectly specular reflecting walls. An arbitrary low value of 0.02 was
assumed for the scattering coefficient for all walls in the room.

The temperature in the room was 20 ◦C, the relative humidity was 55 % and
static air pressure was 101.325 kPa. For these parameters, the air apsorption coef-

2http://www.acoustics-engineering.com
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(a) Irregular room. (b) Spark source.

Figure 6.3: The irregular room with the paper-faced foam bottom and the porous material
on two of its walls. The wave-type scattering surface is placed in the circular opening of the
bottom. For one of its positions, the spark source was placed through a hole on the foam
board in order to eliminate unwanted reflections.

material 4 kHz 8 kHz 16 kHz

original walls 0.02 0.03 0.04
paper-faced foam board 0.30 0.35 0.38

porous absorber 0.85 0.91 0.93
sinusoid surface 0.18 0.25 0.20

wave surface 0.25 0.60 0.85
hexagon surface 0.30 0.45 0.50

αair (dB/1 Km) 27.410 96.320 339.95
αm (10−3 m−1) 6.311 22.179 78.276

Table 6.3: Absorption coefficients for the materials used in the irregular room measure-
ments.

ficient, αair, was calculated using the formulas from [49]. Then, the air absorption
exponent was obtained by [28]:

αm =
αair

10 log10(e)
(6.2)

material 4 kHz 8 kHz 16 kHz

sinusoid surface 0.04 0.15 0.43
wave surface 0.06 0.49 0.81

hexagon surface 0.29 1.00 0.89

Table 6.4: Scattering coefficients for the surfaces used in the irregular room measurements.

6.2.1 Results

Simulations were run with the main algorithm of the CARISM for direct comparison
of the impulse responses with the measured ones and for comparison of five room
acoustic parameters, T30, EDT , C80, D50 and TS.

94



For the simulations, the room was subdivided into 240 elements. A high sampling
frequency of 96 kHz was used for the early impulse responses, in order to match with
the experimental data. For the derivation of the room acoustic parameters, a lower
sampling frequency of 20 kHz was used, for an impulse response length of 40 ms.
Approximately 30 iterations were used in both simulations.

The energy impulse responses from the simulations is compared to the squared
pressure impulse responses from the measurements. Figures 6.4 to 6.11 show the
early part of the response for the source-receiver combination Q1-P1, at 8 kHz, as
well as the energy decay down to -35 dB. Each pair of impulse response and decay
curve corresponds to a different scattering surface. The last pair corresponds to
purely specular walls. For the last case, a flat surface made from the same material
as the sinusoidal one was placed in the circular opening on the bottom – instead of
a scattering surface.

Regarding the squared impulse responses, it can be seen that most of the first
reflections are quite well predicted by the CARISM. Some disagreement exist in their
amplitudes, probably due to errors in the adopted absorption coefficients. Evidently,
these first reflections are represented by the ISM, which is highly involved in the
early part of the simulation. However, after the first milliseconds it is hard to find
coincidence between the predicted and the measured bins, even if the overall graphs
look quite similar. It is important to notice that inevitably we have to compare two
elementary different responses. The measured graph is the square of the pressure
impulse response, which initially includes phase information. On the other hand,
the simulated graph is the energy impulse response, derived without any phase
information taken into account. Although the very first reflections can be predicted,
the stochastic nature of the late ones prevent them to be correctly simulated. Some
errors in the geometry and possible unwanted reflections due to the microphone and
the source should also be taken into account for the disagreement.

The results state another important thing, regarding the setup of the experiment.
According to Tab. 6.1, the area of the scattering surface is very small to produce
clear differences among the different types. The average scattering coefficient in
the room was s̄ = 0.023 when the sinusoidal surface was used, s̄ = 0.031 for the
wave and s̄ = 0.045 for the hexagonal (the scattering coefficient 0.02 for the walls
was also included here). For the case of specular reflections (Fig. 6.10 and 6.11),
only the adopted scattering of the walls was used, so that s̄=0.02. With these
average scattering coefficients it is very difficult to see prominent differences in the
the results of the four cases. However, the bins are differently spaced, when the
surface is changed. Moreover, the response of Fig. 6.10 seems to be less blurred than
the others, revealing the absence of scattering surface inside the room. At this point
it should be stressed that the Lambert’s scattering law adopted in the CARISM is
just an empirical approximate model for describing the diffuse reflections. Hence,
the complicated reflection phenomena occurring on a scattering surface cannot be
properly described in the algorithm. Obviously, the combined nature of the CARISM
is not visible in these figures, since the specular reflections are dominant and the
diffuse model does not play a major role.

According to Figures 6.5, 6.7, 6.8 and 6.11, the energy decay is well predicted
by the CARISM, for the four cases.

It should be emphasized that the impulse responses of Figures 6.4, 6.6, 6.8 and
6.10 were simulated with a high sampling frequency of 96 kHz, while the decay
curves were calculated with a lower sampling frequency and for a longer duration of
40 ms (the curves are plotted for the first 35 ms). Figure 6.12 shows an example of
the impulse response which was used for the derivation of the decay curve in Fig. 6.7.

95



0 2 4 6 8 10 12 14 16 18 20
−30

−25

−20

−15

−10

−5

0

Time (ms)

E
(d
B
)

Figure 6.4: Squared impulse response for the combination Q1-P1 with the sinusoidal scat-
tering surface at 8 kHz. : Measurement. : Simulation.
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Figure 6.5: Energy decay for the combination Q1-P1 with the sinusoidal scattering surface
at 8 kHz. : Measurement. : Simulation.
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Figure 6.6: Squared impulse response for the combination Q1-P1 with the wave scattering
surface at 8 kHz. : Measurement. : Simulation.
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Figure 6.7: Energy decay for the combination Q1-P1 with the wave scattering surface at 8
kHz. : Measurement. : Simulation.
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Figure 6.8: Squared impulse response for the combination Q1-P1 with the hexagonal scat-
tering surface at 8 kHz. : Measurement. : Simulation.
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Figure 6.9: Energy decay for the combination Q1-P1 with the hexagonal scattering surface
at 8 kHz. : Measurement. : Simulation.
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Figure 6.10: Squared impulse response for the combination Q1-P1 without scattering sur-
faces at 8 kHz. : Measurement. : Simulation.
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Figure 6.11: Energy decay for the combination Q1-P1 without scattering surfaces at 8 kHz.
: Measurement. : Simulation.
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Figure 6.12: Squared impulse response for the combination Q1-P1 with the wave scattering
surface at 8 kHz. Sampling frequency of 20 kHz. : Measurement. : Simulation.

Sinusoid Wave Hexagon
Q-P 4 kHz 8 kHz 16 kHz 4 kHz 8 kHz 16 kHz 4 kHz 8 kHz 16 kHz

Q1-P1 (M) 60.6 61.4 62.7 63.0 63.8 64.0 59.4 59.8 59.0
Q1-P1 ( S ) 66.5 65.9 56.7 69.8 65.6 58.5 62.7 61.7 59.0
Q2-P2 (M) 64.2 64.0 62.9 64.1 62.5 60.2 62.0 62.3 60.3
Q2-P2 ( S ) 70.0 66.7 59.5 69.9 66.4 58.8 61.7 59.8 59.1
Q3-P2 (M) 63.7 64.9 64.1 64.5 67.4 64.0 59.9 61.4 63.0
Q3-P2 ( S ) 69.8 65.5 57.9 69.6 64.9 57.0 63.0 61.1 57.5

Table 6.5: Irregular room. Measured (M) and simulated (S) reverberation time T30 (ms).

Now, it is clear that the diffuse part in the CARISM plays a major role after the first
20 ms. However, instead of accurately predicting the bins of the measured response,
it actually follows its envelope. The reason, apart from the diffuse reflections adopted
in the CARISM, is the larger discretization step, which results to different summing
up of the various reflections, that arrive at same time interval.

Tables 6.5 to 6.9 present the measured and predicted room acoustic parameters
for all positions for the 4 kHz, 8 kHz and 16 kHz octave bands. In general the
agreement is good. The main reason for the deviations is the possible errors in the
measured absorption and scattering coefficients.

6.3 Round Robin III Music Studio

The Round Robin in general is a process aiming to help room acousticians evaluating
their simulations. It consists of absorption-scattering data and measurements on
three different types of rooms: one concert hall, one auditorium and one music
studio. Theoretical predictions can be directly compared to the published measured
data. We will focus on the last room, which is considerably simpler than the others
and its measured results are considered quite reliable [21, 22].

Three phases are available for this room, corresponding to different levels of

100



Sinusoid Wave Hexagon
Q-P 4 kHz 8 kHz 16 kHz 4 kHz 8 kHz 16 kHz 4 kHz 8 kHz 16 kHz

Q1-P1 (M) 53.8 58.5 60.0 54.4 58.0 61.6 56.1 60.5 61.3
Q1-P1 ( S ) 61.6 57.8 50.6 63.9 58.0 51.5 59.3 57.0 53.2
Q2-P2 (M) 55.8 60.0 63.1 54.1 55.9 61.9 55.4 57.5 61.6
Q2-P2 ( S ) 64.4 58.4 52.7 64.4 58.6 51.2 58.4 56.2 52.8
Q3-P2 (M) 60.0 64.4 67.2 68.4 69.3 67.3 69.3 69.6 66.7
Q3-P2 ( S ) 70.9 65.9 60.5 70.9 66.1 59.3 62.8 62.3 60.6

Table 6.6: Irregular room. Measured (M) and simulated (S) early decay time EDT (ms).

Sinusoid Wave Hexagon
Q-P 4 kHz 8 kHz 16 kHz 4 kHz 8 kHz 16 kHz 4 kHz 8 kHz 16 kHz

Q1-P1 (M) 8.97 8.28 8.38 9.07 8.73 8.36 8.81 8.21 8.27
Q1-P1 ( S ) 7.58 8.02 9.61 7.32 8.21 9.50 7.97 8.40 9.16
Q2-P2 (M) 8.96 8.37 8.01 9.26 8.86 8.10 8.87 8.59 8.08
Q2-P2 ( S ) 8.00 7.80 9.03 7.07 7.97 9.34 7.95 8.37 9.02
Q3-P2 (M) 7.89 7.80 7.63 6.75 6.79 7.34 6.76 6.86 7.33
Q3-P2 ( S ) 6.12 6.87 7.78 6.13 6.84 8.01 7.34 7.39 7.77

Table 6.7: Irregular room. Measured (M) and simulated (S) clarity C80 (dB).

Sinusoid Wave Hexagon
Q-P 4 kHz 8 kHz 16 kHz 4 kHz 8 kHz 16 kHz 4 kHz 8 kHz 16 kHz

Q1-P1 (M) 76.2 73.7 68.9 75.8 72.2 67.2 74.2 70.3 67.1
Q1-P1 ( S ) 73.9 76.1 81.0 73.2 76.7 80.5 75.0 76.9 79.4
Q2-P2 (M) 74.1 73.9 68.8 76.7 76.8 69.3 74.8 74.4 68.2
Q2-P2 ( S ) 70.7 74.4 77.9 70.7 74.3 78.9 73.9 75.5 77.8
Q3-P2 (M) 77.7 74.9 72.4 71.4 67.2 66.8 70.6 67.6 65.0
Q3-P2 ( S ) 67.2 70.6 73.7 67.2 70.4 74.6 71.5 72.3 73.6

Table 6.8: Irregular room. Measured (M) and simulated (S) definition D50 (%).

Sinusoid Wave Hexagon
Q-P 4 kHz 8 kHz 16 kHz 4 kHz 8 kHz 16 kHz 4 kHz 8 kHz 16 kHz

Q1-P1 (M) 5.16 5.32 5.38 5.17 5.35 5.57 5.21 5.43 5.50
Q1-P1 ( S ) 5.53 5.34 4.73 5.66 5.25 4.82 5.36 5.18 4.92
Q2-P2 (M) 5.26 5.29 5.53 5.18 5.24 5.65 5.21 5.23 5.64
Q2-P2 ( S ) 5.50 5.07 4.65 5.50 5.08 4.55 5.08 4.90 4.66
Q3-P2 (M) 5.21 5.25 5.31 5.58 5.67 5.56 5.29 5.61 5.67
Q3-P2 ( S ) 5.86 5.45 5.00 5.85 5.46 4.90 5.52 5.21 5.01

Table 6.9: Irregular room. Measured (M) and simulated (S) center time TS (ms).
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Freq. (Hz) 125 250 500 1000 2000 4000

αair (dB/1 Km) 0.4486 1.3210 2.7161 4.6496 9.9950 30.3081
αm (10−3 m−1) 0.1033 0.3042 0.6254 1.0706 2.3014 6.9787

Table 6.10: Air absorption coefficient and corresponding air absorption exponent for use
in the Round Robin simulations.

detail. The first one consists of 7 plane walls forming only convex corners between
them3. The second phase consists of around 70 walls and provides a higher geometric
accuracy, but without all the surface details. The higher level of detail is achieved
in the third phase of the room, which is not considered here.

6.3.1 First Phase

The first phase is quite straightforward to be evaluated, because the room consists
of convex corners. This means that all elements are visible from the others and no
special treatment is required for including obscuring checks. Our algorithm can be
applied directly to this geometry. The meshed room is illustrated in Figure 6.13.
N = 324 elements were used. All walls are given uniform absorption and scattering
coefficients by PTB, both equal to 0.1, for six octave bands: 125 Hz, 250 Hz, 500 Hz,
1 kHz, 2 kHz and 4 kHz. The source is placed at two positions and the receiver at
three, giving six source-receiver combinations as shown in Table 6.11. The response
at the three receivers is calculated simultaneously for each source. In the algorithm
of Figure 4.16 each of the three receivers is checked whether it is inside the effective
polyhedron, so that a contribution to be added.

Since the absorption and scattering is the same for all bands, simulations are
performed only once for each source and the three receivers. Only the air absorption
is different at each frequency. Thus, initially the impulse responses are calculated
without air absorption and the final ones are obtained by eq. (4.14). As specified
by PTB, the temperature in the room is 20 ◦C, the relative humidity is 50 % and
static air pressure is 1000 hPa. For these conditions the air absorption coefficient is
calculated using the formulas from [49] and the air absorption exponent is obtained
from eq. (6.2). Table 6.10 shows the values of αair and αm used in the simulations.

The simulations by the CARISM are compared with the mean of 20 predictions
by other room acoustic software. These predictions are available by PTB. There is
no point to compare the estimations directly to the available measurements, since
the first phase of the music studio is extremely simplified and the absorption and
scattering data are approximately attached to the walls. As we will see in Section
6.3.2, the measured data are quite far from the predicted ones for this phase. The
actual role of the first phase is to examine the agreement between the various room
acoustic models and not between them and the real data. The room has an ap-
proximate volume of 400 m3 and the average real reverberation time is about 0.95 s.
Hence, the Schroeder’s frequency is approximately 98 Hz. As we will see in Sec. 6.3.2,
the simulated results for the lower frequency band (125 Hz) deviate much from the
measured data, since this octave band is quite close to the Schroeder’s frequency.

3Convex is a corner with internal angle less than 180 degrees, while concave is a corner with
internal angle more than 180 degrees. Sometimes the terms are used in the reverse way [11].
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x (m) y (m) z (m)

Q1 1.5 3.5 1.5
Q2 -1.5 5.5 1.5
P1 -2.0 3.0 1.2
P2 2.0 6.0 1.2
P3 0.0 7.5 1.2

Table 6.11: Source-receiver positions at the Round Robin III room.
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Figure 6.13: First phase of Round Robin III, consisting of 7 uniformly absorptive and
scattering walls. Meshing with N = 324 elements.
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6.3.1.1 Results

Figures 6.14 to 6.19 present the calculated T30, EDT , C80, D50, TS and G values
for each source-receiver combination at each octave band.

In general, the estimations by the proposed algorithm are very close to the mean
values from other prediction software. The shape of the curves is similar, revealing
the common assumptions used by all geometrical acoustics models. Clearly, the air
absorption is responsible for the variations throughout the frequency range, since the
absorption and scattering of the surfaces are constant. In some cases the results by
the CARISM deviate from the mean of the other software but they are still within
the corresponding standard deviation.

6.3.2 Second Phase

The second phase of the Round Robin III room has two versions: one with open
and one with closed curtains. We will focus on the second one, consisting of about
65 walls and being slight simpler than the first one. Some couples among the walls
form concave corners, which complicates the ISM in a way that more validation
criteria should be included. Mechel [11] gives a thorough description of the ISM
in concave rooms, so that only a few basic rules will be revised here. Apart from
convex corners, the room contains curtains which form apertures between them and
the walls. Handling of the apertures is a really important task because sound rays
can enter the cavity behind the aperture, leading to complex reflections.

One of the major modifications that has to be done in the existing algorithm is
the inclusion of an obstacle test , since any obstacle, such as a convex corner or a
curtain, may prevent an image source or a surface element of “seeing” part of a wall
behind them. This obstacle test has to be performed from the very early stage of
the form factor calculation. If an element is not visible by another one, their form
factor is zero. Calculating all form factors in this way, we do not need to include
the obstacle test again during the diffuse part of our algorithm, since it will have
been already done for the form factors. As in computer graphics, the form factor
expression – eq. (2.19) – can be generalized including a visibility term:

Fi,j =
1

Si

∫
Si

∫
Sj

Vi,j
cos θ cos θ′

πR2
ds′ ds (6.3)

where Vi,j = 1, if the line between i and j is unobstructed and Vi,j = 0, otherwise.

Even if the room is relatively simple comparing to the other two phases of Round
Robin, it is still quite complicated for our unoptimized algorithm. For that reason,
some of the initial complexities were removed for the simulations. An initial picture
of the room is illustrated in Figure 6.20, where the two closed curtains have been
noted by 1 and 2. The large curtain, no 1, covers almost all the wall behind it leaving
only a small gap of 5 cm height from the floor – along z axis. We can simplify the
room model by assuming that the curtain is stretched down to the floor, covering the
small gap. In this way, the whole wall behind the curtain can be ignored. Apparently,
we cannot do the same for the smaller curtain, no 2, because the aperture that it
forms is quite large both in the x and z axis. Apart from the complexity due to
the curtains, the original room contains several concave polygonal walls which are
difficult to be handled by our primitive algorithm. Instead, these walls are split into
convex polygons. The modified room is meshed with 660 triangular elements, as
illustrated in Figure 6.21.
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Figure 6.14: First phase of Round Robin III. Reverberation time T30. n : Mean value
and ± standard deviation from 20 participants. l : Results by CARISM.
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Figure 6.15: First phase of Round Robin III. Reverberation time EDT . n : Mean value
and ± standard deviation from 20 participants. l : Results by CARISM.
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Figure 6.16: First phase of Round Robin III. Clarity C80. n : Mean value and
± standard deviation from 20 participants. l : Results by CARISM.
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Figure 6.17: First phase of Round Robin III. Definition D50. n : Mean value and
± standard deviation from 20 participants. l : Results by CARISM.
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Figure 6.18: First phase of Round Robin III. Center time TS. n : Mean value and
± standard deviation from 20 participants. l : Results by CARISM.
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Figure 6.19: First phase of Round Robin III. Sound strength G. n : Mean value and
± standard deviation from 20 participants. l : Results by CARISM.
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Figure 6.20: Second phase of Round Robin III. Original room with closed curtains consist-
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Figure 6.21: Second phase of Round Robin III. Modified room consisting of 70 convex
polygonal walls. Meshing with N = 660 elements.
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Figure 6.22: An example of a concave room with corners up to 270◦. The image source q,
corresponding to wall No 1, is effective only for element C. The element is inside the source
effective polyhedron (dashed line) and the connection line between the element and source
is not obscured.

List of Parallel Walls The fact that the angle of all convex corners does not
exceed 270◦ is very useful for facilitating the obstacle test. If the angle exceeds
270◦, there is a sequence of tests that should be performed in order for an image
source to be accepted. These are described in [11] and they are not repeated here.

However, in our case we only need to proceed as follows: For each wall, let us call
it reference wall, we find all the others that have the same unit normal vectors. So
we essentially find all the parallel walls pointing towards the room interior. These
walls are also checked if they are inside the reference wall. Every line formed by the
source behind the reference wall and the receiver has to be checked if it intersects
any of these parallel walls. Each of these walls should be further checked whether it
lies between the source and the receiver. If both criteria are fulfilled, the wall can be
considered as obstacle and the receiver is not visible by the source. Figure 6.22 gives
an example where the reference wall is 1. Walls no 2 and 3 are parallel and inside 1.
The effective polyhedron of the source q is denoted by the dashed line. Elements A
and B are not visible by the source even if they are inside the effective polyhedron,
because the lines connecting them with the source intersect walls 2 and 3, at x and
y respectively. On the other hand, element C is visible, because it is both inside the
effective polyhedron and the line connecting the element with the source does not
intersect any of the parallel walls.

6.3.2.1 Results

The main algorithm of the CARISM was run separately for each frequency band and
for each source of Table 6.11. Time was discretized with a sampling frequency of 2
kHz and the length of the impulse response was 0.9 s. 30 iterations were used. The
same room acoustic parameters as in Sec. 6.3.1.1 were calculated. The simulation
results are presented in Figures 6.23 to 6.28, together with the mean of the published
measured data and the mean of 20 predictions by other room acoustic software.

The behavior of the simulated curve is similar to the mean of the 20 predictions.
This can be explained by the common limitations of the various geometrical acoustic
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models. In most of the cases, the results by CARISM are within the standard
deviation of the predictions, that is, within ±34% of the predictions above and below
the mean value. The lowest octave band is close to the Schroeder’s frequency (' 98
Hz) and all models (including CARISM) have difficulties in simulating properly
the sound field. Hence in most of the cases the deviation between simulations and
measurements is large.

The T30 values by CARISM are higher than the mean of the 20 predictions at
all positions, but lower than the measured data at high frequencies. The positional
dependence of T30 is very small for the predictions by CARISM and the other soft-
ware. This seems to happen again due to similar assumptions about the behavior of
sound waves. However the results for bands 1 kHz and 2 kHz, provided by CARISM,
are very close to the measured data. In general, the differences in the T30 very much
depend on the air absorption model used. For our CARISM prediction, the values
from Table 6.10 were used.

The EDT values by CARISM are lower in general than the mean of the 20 pre-
dictions at all positions. In some positions and some frequency bands the agreement
is very good with the measured data.

As for clarity, C80, the predictions by CARISM are close to the measured data
at the middle frequencies (500 Hz and 1 kHz), but they are much higher at 4 kHz.
Surprisingly, at the positions Q2-P1 and Q2-P3 there is a nice agreement between
our simulations and the measured data at 125 Hz.

The case is similar for definition, D50. Above 250 Hz the agreement with the
measured data is satisfying. As for the center time TS and the sound strength G
the simulations by the CARISM are very close to the mean of the 20 predictions, in
most of the cases. The agreement with the measured data is good above 1 kHz for
TS and between 250 Hz and 1 kHz for G.

Tables 6.12 and 6.13 present the averaging for the 250 Hz, 500 Hz, 1 kHz and 2
kHz octave bands at every source-receiver combination. The measured data and the
results by CARISM are shown. The maximum error for T30 is 8.5 % with respect to
the measured value. The highest agreement between simulation and measurements
is observed for G and D50 where the error is around 1 to 4 %. The TS predictions
are also quite good.

Evidently, the modified room model treated by the CARISM is rather simpli-
fied to give predictions very close to the measured data. The second phase of the
Round Robin III is itself an approximation of the real geometry, better represented
by the third phase. In order to increase the speed of form factor calculation, the
configuration factors were used instead of the full form factor between two elements
(Sec. 2.4.2). This also introduces some errors in the prediction. Finally, the bound-
ary subdivision could be more dense and the sampling frequency could be larger,
increasing the accuracy.

6.3.3 Computational Performance

The speed of execution of the CARISM algorithm very much depends on the number
of walls, the number of surface elements and the level of time discretization. Evi-
dently, the number of image sources increases in a non linear way as a function of
the number of walls, as was mentioned in Sec.3.3. As for the AR part, the algorithm
has a second order dependency with the number of elements, N2.

The time required for each iteration is not constant but depends strongly on the
number of image sources that are created. In the usual behavior, the iterations are
very fast at the beginning, very slow at the peak of the image-source production and
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Figure 6.23: Reverberation time T30. l : Mean value and ± standard deviation from
measured data. · n · : Mean value and ± standard deviation from 20 participants. u

: Results by CARISM.
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Figure 6.24: Reverberation time EDT . l : Mean value and ± standard deviation from
measured data. · n · : Mean value and ± standard deviation from 20 participants. u

: Results by CARISM.
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Figure 6.25: Clarity C80. l : Mean value and ± standard deviation from measured
data. · n · : Mean value and ± standard deviation from 20 participants. u : Results
by CARISM.
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Figure 6.26: Definition D50. l : Mean value and ± standard deviation from measured
data. · n · : Mean value and ± standard deviation from 20 participants. u : Results
by CARISM.
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Figure 6.27: Center time TS. l : Mean value and ± standard deviation from measured
data. · n · : Mean value and ± standard deviation from 20 participants. u : Results
by CARISM.
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Figure 6.28: Sound strength G. l : Mean value and ± standard deviation from mea-
sured data. · n · : Mean value and ± standard deviation from 20 participants. u :
Results by CARISM.
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T30 (s) EDT (s) G (dB)

Q P M S Err. (%) M S Err. (%) M S Err. (%)

Q1 P1 0.86 0.89 3.5 0.82 0.75 -8.5 17.57 17.37 -1.1
Q1 P2 0.82 0.89 8.5 0.77 0.75 -2.6 19.18 18.30 -4.6
Q1 P3 0.83 0.89 7.2 0.85 0.78 -8.2 17.27 17.39 0.7
Q2 P1 0.83 0.89 7.2 0.81 0.77 -4.9 18.66 18.38 -1.5
Q2 P2 0.84 0.89 5.9 0.80 0.83 3.8 17.67 17.48 -1.1
Q2 P3 0.82 0.89 8.5 0.79 0.77 -2.5 18.73 18.76 0.2

Table 6.12: Second phase of Round Robin III. Measured (M) and simulated (S) T30, EDT
and G values for all source-receiver combinations, averaged for the 250 Hz, 500 Hz, 1 kHz
and 2 kHz octave bands.

C80 (dB) D50 (%) TS (ms)

Q P M S Err. (%) M S Err. (%) M S Err. (%)

Q1 P1 5.24 5.72 9.2 60.91 61.57 1.0 55.50 56.99 2.7
Q1 P2 6.11 6.34 3.8 68.18 67.43 -1.1 46.63 49.42 6.0
Q1 P3 4.78 5.01 4.8 60.36 58.89 -2.4 58.15 62.25 7.1
Q2 P1 5.71 6.34 11.0 65.36 67.03 2.6 49.46 49.19 -0.6
Q2 P2 4.95 4.81 -2.8 59.01 58.36 -1.1 56.58 61.42 8.6
Q2 P3 5.80 6.33 9.1 66.00 66.71 1.1 48.80 50.19 2.8

Table 6.13: Second phase of Round Robin III. Measured (M) and simulated (S) C80, D50

and TS values for all source-receiver combinations, averaged for the 250 Hz, 500 Hz, 1 kHz
and 2 kHz octave bands.

fast again at the end, where the ISM is gradually converted to AR (see Sec. 5.5). All
algorithms were implemented in MATLAB for research purposes and they are only
slightly optimized. Hence it seems reasonable that their performance is poor. It is
believed however that a commercial implementation of the suggested method could
be highly efficient, for the detailed impulse responses that it provides.

The first phase of the music studio, consisting of 324 elements and only convex
walls, was very simple to implement. The main CARISM algorithm was run for
each of the two sources, for one frequency band. The execution time was 10 minutes
for the first source and 11 minutes for the second one. Since the absorption and
scattering coefficients were the same for all frequency bands, only one calculation

Time (min)
Freq. (Hz) Q1 Q2

125 23.88 23.45
250 23.78 23.38
500 22.70 22.45
1000 23.63 23.50
2000 22.85 22.40
4000 22.56 21.90

Table 6.14: Computational Times of the CARISM main algorithm for the second phase of
Round Robin III, with closed curtains. For every source, each frequency band was calculated
separately. The room was subdivided into 660 elements. A sampling frequency of 2 kHz
was used for an impulse response length of 0.9 s.
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was performed. Afterwards, the impulse responses at the receivers were filtered by
the air absorption for each band. The calculation time for the form factors was 17
s.

The second phase of the music studio, consisting of 660 elements and concave
walls, was much more difficult to implement. The obstacle test is very time con-
suming, raising the algorithm computational effort abruptly. The absorption and
scattering coefficients were different for each frequency band, so that the algorithm
was run for each source and each band separately, that is, for 12 times. The dura-
tion of each simulation is presented in Table 6.14. The calculation time of the form
factors was 10 min.
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Chapter 7

Conclusion

7.1 Summary and Discussion

This study was devoted on developing a combined room acoustic model treating
diffuse and specular reflections. The model is based on the acoustic energy propaga-
tion and incorporates two other well known models: acoustical radiosity (AR) and
image source model (ISM). The former deals with purely diffuse, while the later
deals with purely specular reflections.

Initially, the principles of AR and the ISM are presented. As for AR, the main
equations are presented in analytical and discretized form. Emphasis is given on the
calculation of form factors for the particular case of a pair of triangular elements.
The form factor integrals are transformed using the parametric equation of a plane,
so that they can be easily integrated numerically. The application of the ISM in
rectangular rooms and in arbitrary polyhedral rooms is presented. The important
topic concerning the validity of the generated image sources in polyhedral rooms is
discussed and several criteria for accepting or discarding a source are presented.

In the main chapter of the thesis (Chap. 4), the AR discretized equations are
reformulated to account for the specular part represented by the ISM. The group of
final equations constitutes the combined model, which was given the name CARISM
(Combined Acoustical Radiosity – Image Source Model). The model is implemented
in two multi-iteration algorithms. In the proposed model, the concept of iteration
is equivalent to the reflection order, so that image sources from the ISM and source
elements from AR are treated in a unified way. The first algorithm, the main one,
neglects any specular reflections of the diffuse portion of energy and thus it neglects
the coupling between AR and the ISM. The second one, the full algorithm, takes
this coupling into account.

Both the main and the full algorithm are studied through several examples in
Chapter 5. The results produced by the two algorithms are compared with each
other. The deviation is small, leading to the conclusion that the error arising from
neglecting the specular reflections of the diffuse energy is not large. The direct
diffuse contribution between the elements – applied in the main algorithm – seems
to be enough for the distribution of energy, since the important specular reflections
are still preserved by the image sources.

The CARISM in its unoptimized implementation is computationally costly, since
its main components, AR and the ISM are already costly methods themselves. AR
is heavy because the boundary of the room has to be subdivided into a large num-
ber of elements and the impulse response on each element has to be calculated. For
a large room, thousands of elements would be required, raising the computational
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cost proportionally to the square of the number of elements. The ISM is also a
computational heavy method, because the number of image sources grows exponen-
tially as a function of the order of reflections taken into account and the number
of walls. It was shown that the execution time for the CARISM depends strongly
on the scattering coefficient, that determines which of the two models is dominant.
Initially, more energy is handled by the ISM than AR, so that image sources are
generated with an exponential rate. Depending on the scattering coefficient, the
image source production per iteration exhibits a peak after which their number per
order is reduced and the energy is gradually transfered to AR.

Application of the CARISM to concave rooms is very time consuming because
of the obstacle tests that should be performed. An example of a concave room was
treated in Section 6.3.2.

Simulations by the CARISM were validated with experimental data in chapter
6. Initially, measurements in a small polyhedral reverberant room were carried
out using three circular scattering surfaces placed on its bottom. Some absorption
material was added on the walls in order to obtain a reasonable energy decay. The
measured squared impulse responses were quite different from the simulated energy
impulse responses, clearly because of the principal violations of the wave nature
by our algorithm. As in all geometrical acoustic models, the concept of sound
wave is extremely simplified and all interference phenomena between waves in an
enclosure cannot be modeled properly. Apart from that, the measured pressure
impulse response includes phase information, while the energy impulse response from
the CARISM does not. Hence, even if the measured impulse response is squared,
the outcome is expected to be similar to the predicted energy impulse response only
in the very early part. Besides the expected disagreement in the impulse responses,
their backward integration, i.e., the energy decay curves, were close to each other.
Moreover, the predicted room acoustic parameters were close to the measured ones.
Some deviations can be attributed at errors in the measurements of the absorption
and scattering coefficients. Uncertainties are involved in the air absorption model
used as well.

The model was also applied in prediction of room acoustic parameters for a real
music studio, located at the German National Metrology Institute (PTB). Absorp-
tion and scattering coefficients are provided by PTB. The simulations were compared
with published measured data and results from other room acoustic prediction soft-
ware. The agreement was satisfying in most of the cases.

The proposed model falls into the common limitations of the geometrical acous-
tic models. Less deviation from the measured data is obtained above Schroeder’s
frequency, where a high modal overlap occurs. The model does not take phase in-
formation into account, since it is energy based. Hence, wave fields and eigenmodes
cannot be predicted.

At this point it should be clear that all geometrical acoustic models do not at-
tempt to replace the full wave equation solution, which in general gives a more
physically correct interpretation of the complicated real acoustic phenomena. Fi-
nite element or boundary element methods deal with numerical solutions of the
wave equation, but their range of application is limited to small enclosures. Conse-
quently, the approximations adopted by geometrical acoustic models are inevitable
for practical applications in large and complicated rooms, such as concert halls.

One of the known problems in room acoustics literature is the difficulty in exper-
imentally validating the theoretical results. Indeed, as discussed in Sec. 6.2, the lack
of phase information in some models – like the CARISM – gives ambiguous predic-
tions of the impulse response. Still, even models with phase information included are
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not able to predict well the response, because of their physically incorrect assump-
tions about waves. Nevertheless, the energy decay can be predicted quite well by
room acoustic models, as long as the degree of absorption and scattering have been
determined correctly. Since most room acoustic parameters of interest are based on
energy ratios, the room acoustic models are very useful for predicting these param-
eters. This is the reason why geometrical acoustic modeling is the widely accepted
tool for room acoustic studying and designing.

In this study, an attempt to validate the model experimentally took place. How-
ever, many of the ideas have been only theoretically validated, mainly because of
time limitations. The study introduces a new model and serves more as an initiation
for further development.

7.2 Future Work

Probably the most important extension of the project would be a series of carefully
designed experiments for validation of the model. Clearly, investigating scattering
in real rooms is a rather difficult task, due to the fact that the scattering coefficients
themselves are difficult to determine and much more error is involved in their mea-
surement in comparison with the absorption coefficients. Apart from that, even if
the measured energy decay for a room, partially covered with scattering surfaces, is
approximately exponential, the measured impulse responses are quite similar to the
case with only specular surfaces. In the experiments of Sec. 6.2, the average scat-
tering coefficient was too low to lead to clearly distinguishable differences between
the responses with and without scattering. A more carefully designed experiment
should involve a much larger portion of scattering in the room. Moreover, regular
geometries, such as rectangular rooms, can provide clearly different results with and
without scattering, as we saw in Sec. 5.3 and 5.4.

The algorithms implementing the CARISM could be rewritten in efficient com-
puter languages and optimized, so that complicated concave room geometries could
be treated.

The wall visibility criterion for the image source generation in the CARISM could
be improved. In this study, a highly precise criterion and an approximate criterion
were proposed. However, the first one is excessively time consuming for a practical
application, while the second one involves errors in determining the actual number
of image sources per iteration and gives rise to some statistical behaviour in the
algorithm.

Further investigation of the role of image elements is required. Several specific
cases can be studied where the specular reflections of the diffuse portion of energy
could be important. In such cases, the coupling between AR and the ISM should
not be omitted.
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Appendix A

Room Acoustic Parameters

Definitions and practical way of calculation are presented for the room acoustic
parameters used in this study. The starting point for all following calculations is the
squared pressure impulse response.

A.1 Energy Decay Curve

The energy decay curve describes the rate of the energy attenuation due to absorp-
tion in the room. It can be considered as a smooth version of the reflectogram –its
envelope–, normalized with the total energy throughout the impulse response du-
ration. In this way, the maximum energy corresponds to 0 dB. The energy decay
curve can be obtained by the Schroeder’s integration method [50]:

EDC(t) = 10 log10

(∫∞
t p(τ)2 dτ∫∞
0 p(τ)2 dτ

)
(A.1)

In practice, when the impulse response has been computed for discretized time, we
can approximate the integration by a sum over all time steps:

EDC[n] = 10 log10

(∑q=T
q=n p(q)

2∑T
q=1 p(q)

2

)
(A.2)

where n is the current time step and T is the whole duration of the discretized
impulse response. Any of the commonly used reverberation times, T20, T30 and
EDT is obtained from the decay curve by a least squares linear fitting, according
to ISO 3382 [51, 52].

A.2 Clarity

Clarity measures the balance between early and late arriving energy. The early part
is defined as the part between the arrival time of the direct sound plus 80 ms. The
late part is taken to be after these 80 ms. Clarity is most used for characterizing
the music quality of a room. It is given by:

C80 = 10 log10

(∫ 80ms
0 p(t)2 dt∫∞
80ms p(t)

2 dt

)
(dB) (A.3)

where t = 0 refers to the direct sound. In discretized form, eq. (A.3) is expressed as:

C80 = 10 log10

(∑q=nd+n80ms
q=nd

p(q)2∑T
q=nd+n80ms

p(q)2

)
(dB) (A.4)
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where nd is the time step corresponding to the direct sound and n80ms is the time
step corresponding to 80 ms after the direct sound. According to ISO 3382 [51, 52],
the total duration T should be sufficient for the energy to have decayed by 30 dB.
Only then ∞ can be replaced by T .

A.3 Definition

Definition gives the ratio between the early arriving energy, up to 50 ms after the
direct sound, and the total one:

D50 =

∫ 50ms
0 p(τ)2 dτ∫∞
0 p(τ)2 dτ

100 (%) (A.5)

Definition is used most for characterizing the speech quality of a room. In discretized
form, eq. (A.5) is expressed as:

D50 = 10 log10

(∑q=nd+n50ms
q=nd

p(q)2∑T
q=nd

p(q)2

)
(dB) (A.6)

where as before n50ms is the time step corresponding to 50 ms after the arrival time
step nd of direct sound. As with clarity, the total duration T should be enough for
the energy to have decayed by 30 dB.

A.4 Center Time

The center time is the time-weighted average of the squared pressure impulse re-
sponse:

TS =

∫∞
0 tp2(t) dt∫∞
0 p2(t) dt

(ms) (A.7)

In discretized form it can be written as:

TS =

∑q=T
q=1 t(q)p

2(q)∑q=T
q=1 p

2(q)
(ms) (A.8)

A.5 Sound Strength

The sound strength describes the perceived loudness. It is given by:

G = 10 log10

∫∞
0 p2(t) dt∫∞
0 p210(t) dt

= LpE − LpE,10 (dB) (A.9)

where LpE is the sound pressure exposure level of p(t):

LpE = 10 log10

(
1

T0

∫ ∞
0

p2(t) dt

p20

)
(dB) (A.10)

and LpE,10 is the sound pressure exposure level of the sound pressure 10 m away
from the source in free field –p10(t):

LpE,10 = 10 log

(
1

T0

∫ ∞
0

p210(t) dt

p20

)
(dB) (A.11)
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In the foregoing equations, p0 = 20 µPa and T0 = 1 s.
For calculating the sound strength from simulations, a simplified formula can be

used for the denominator, based on the power of the source, WQ. According to the
sphere propagation law, the energy density at 10 m away from the source is:

E =
WQ

4πc102
e−αm10 (A.12)

at a specific time, given by the distance (10 m) divided by the sound speed c. αm
accounts for the air absorption. The square of the average sound pressure can be
given in terms of energy density E(t) as:

p2(t) = E(t)ρ0c
2 (A.13)

where ρ0 is the density of air. For an impulsive source, only one value arrives at the
receiver, so that the integration in the denominator of eq. (A.9) simply becomes:∫ ∞

0
p210(t) dt =

WQρ0c

4π102
e−αm10 (A.14)

The sound strength can be written now in discretized form as:

G = 10 log

( ∑T
q=1 p(q)

2

WQρ0c
4π102

e−αm10

)
(dB) (A.15)
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